
Å b o Akad e m i, E S lab , 2 003-10-03 1

Tid
rum

Static Execution Time Analysis

Overview

• Area of interest

• Current state

• Work in progress

• What to do next

Niklas Holsti

Space Systems Finland Ltd (now)
Tidorum Ltd(to be)

Å b o Akad e m i, E S lab , 2 003-10-03 2

Tid
rum

Area of interest

• Static analysis of programs for
– Bounds on execution time and memory space
– other properties that depend on:

• the possible execution paths
• the time/space/energy usage along the execution path
• the sequence of actions on the execution path (~ protocols)

• Applications
– analysis of executable (binary) programs
– for embedded real-time systems
– for verification (meets time and space limits)
– for understanding (time and space per program part)

Å b o Akad e m i, E S lab , 2 003-10-03 3

Tid
rum

Static execution-time analysis

Bounds on input data

CPU speed model

(Sub)program code
Bounds on
exec time

Static
analysis

Problem is unsolvable in general <= Halting Problem.
- need restrictions on program structure
- may get pessimistic (safe but inaccurate) results

Å b o Akad e m i, E S lab , 2 003-10-03 4

Tid
rum

Current state = the Bound-T tool

• Analyses worst-case execution time and stack usage
– for deterministic processors (no cache, linear pipeline)

• SPARC V7 (ERC32), ADSP 21020, Intel 8051, ARM7 (proto)
– from compiled, linked binary (no source-code analysis)

• Implementation
– manually written (Ada 95)
– modular: target-specific part + generic part

• Generic techniques
– program model = flow-graphs + call-graph + assertions
– loop counters modelled by Presburger arithmetic (Omega tool)
– worst-case execution path from ILP (lp_solve tool)
– assertion language using syntactic structure of program

Å b o Akad e m i, E S lab , 2 003-10-03 5

Tid
rum

Bound-T flow

Source
code ExeCompile

Link

Assertions Bound-T

WCETs

Call Tree

Stack bounds

HRT Execution
Skeleton

Å b o Akad e m i, E S lab , 2 003-10-03 6

Tid
rum

Work in progress

• Increasing power of arithmetic analysis
– Constant propagation to simplify program model
– slicing along dependencies to simplify program model
– optimized translation to Presburger formulae

• Increasing power of flow analysis
– Less constrained loop structures (DJ method)

• Better analysis of dynamic addresses
– case/switch statements, jump tables
– array accesses, pointers to data or code

• More powerful assertions
– context-dependent (call-path dependent) assertions

• Porting to more target processors

Å b o Akad e m i, E S lab , 2 003-10-03 7

Tid
rum

EU research cooperation

• ARTIST 2 Network of Excellence
– proposal for EU 6th Framework Program
– cluster: “Compilers and Timing Analysis” led by R. Wilhelm
– participants: most EU WCET research groups

• Saarbrücken, AbsInt, Mä lardalen, TU Wien, IRISA, York, SSF, ...
– aims defined by “integration” purpose of NoE:

• define common modular structure of WCET tools
• interoperation of modules from various sources
• adapt existing academic & commercial tools to conform

– preparation for a larger FP6 WCET proposal in mid-2004
• ForTIA = Formal Techniques Industry Association

– Mainly specification & verification tools, little analysis

Å b o Akad e m i, E S lab , 2 003-10-03 8

Tid
rum

What to do next in R & D

• Feasible paths
– theory? representation? analysis? presentation? ...

• Loops
– nested loop dependencies, eg. triangular loops
– inter-loop dependencies
– non-counting loops: shifting loops, binary search, ...

• Dynamic processor architectures
– caches, parallel units, multiple issue, ...

• Generative implementation of target-specific analysis modules
– languages to describe target processors
– trade-off: language power <=> implementation complexity

Å b o Akad e m i, E S lab , 2 003-10-03 9

Tid
rum

Example of feasible path problem (real case!)

procedure A is
begin

for n in 1 .. 200 loop
B (action(n), ok);
exit when ok;

end loop;
end A;

procedure B
(act : in action_t; ok : out boolean) is

begin
Quick_Try (act, ok);
if ok then

Long_Comp (act);
end if;

end B;

• Expected WCET(A, B) ~ 20 ms
• Syntactic paths (A, B) => Long_Comp 200 times => 4 seconds !
• Feasible paths (A, B) => Long_Comp once => 20 ms.

Å b o Akad e m i, E S lab , 2 003-10-03 10

Tid
rum

This one could be solved by different design

procedure A is
begin

for n in 1 .. 200 loop
Quick_Try (action(n), ok);
if ok then

Long_Comp (action(n));
exit;

end if;
end loop;

end A;

• Syntactic paths (A, B) = Feasible paths (A, B)
=> Long_Comp once => 20 ms.

• Perhaps “ inlining” during analysis would see this, too.

Å b o Akad e m i, E S lab , 2 003-10-03 11

Tid
rum

Research problems in feasible paths analysis

• Formal representation
– ? similar to flow graphs, or very different (other “aspects”)
– ? enumerative, linguistic, algebraic, automata, ...

• Analysis
– ? how: discover variable relationships, condition dependencies, ...
– ? what: find the important path constraints, ignore trivial ones

• Generality and usefulness
– ? same or different path representation & analysis for

• time analysis
• memory analysis
• points-to analysis
• functional correctness & proof
• etc.

Å b o Akad e m i, E S lab , 2 003-10-03 12

Tid
rum

The End

or the beginning?

