Niklas.Holsti @ ssf .fi
Thomas.Langbacka @ ssf fi
Sami.Saarinen @ ssf .fi

SPACE SYSTEMS
FINLAND

Worst-Case Execution Time Analysis
for Digital Signal Processors

Static analysis of the worst case

ESTEC contract No. 13362/99/NL/FM

Bound-T Statically analyses an executable

tool binary program, gives bounds on Why? ensures that real-time deadlines Crash
worst-case execution time (WCET) are always met _’Worst oo zﬂ‘r’n
not tested,
Source code Libraries but happens
) e User assertions Measure Real-world
Compiler on loop bounds, /’ TG @ OK |operation Usually |
& linker variable values, B BEEED fast
Executable call counts, etc. Design / enough
binary real-time Fail Real-time events
software

Find worst
case with
Bound-T

Always
I Real-world | _fast |

Ok | operation enough

N

Problem is generally unsolvable; made

Analysis phases:

Decode instructions
'/ Analyse control flow

Bound loop iterations

[Analyse subprogram calls

Enter Foo0) Find worst-case path How? tractable by coding rules and guidance
from user-given assertions
lem iig Loops should be controlled by counters.
’ clz/cl)alloc 55 Loop-bounds should be static, or derived
_Solve 99 from static subprogram arguments.
.. Malloc 43
Return .. Sync 12 Methods used in Bound-T include:
Loop bounds: Presburger Arithmetic (Omega System)

Flow graphs Call graphs WCET for calls Worst case: Integer Linear Programming (Ip_solve)

Sun Solaris (... Linux, Win NT)
ADSP-21020, Intel-8051, ...

Bound-T platforms:

Bound-T targets: Coded with the GNU Ada Compiler GNAT from ACT.

DSP
particulars

Complex DSP instructions are a
challenge for static analysis

1,2,3

Loop
bounds

Simple, counter loops are bounded
automatically; others need assertions

none

Data-flow analysis
in Bound-T finds:

#define VEC_LEN 100
float sum_vector (float vec[])
{ inti;

Architectural pipelines
Zero-overhead loops

Iloaz_surg - 0.3;E ¢ Len: ey | COUNtEriS| Delayed branches ot eg
or(i=0;i< > | ; i+ o
sum += vec[il; Initially i = 0 1 do 9 until ac; o S
return sum; ; R — 2 if eq jump 33 (la); nop(3),nop(4),33
3} Flna"y 1=99 3 lentr=50, do 7 until Ice; 4£5 mp\e
Thus 100 repeatS. 4 if eq jump 7; “4.78&(2,9) 1
int find (int *vec, int val) 5 r5=r0+1; not iq/\eq
{ intlow = 0, high, mid; 6 r6 =r0-1; iy 5 hon(6). 7
hlgh = VEC_LEN -1; NO Counter’ user 7 r7 =r5 *r6; (4,7)‘&‘(2.9) ?;7))&(5(9))
while (low <= high) { b ds: 8 r8=r7+r5;
mid = (lOW + h|gh) / 2’ asserts Oun S 9 r9 =r5 + r8; c=0 c>0 c=0 c>0
if (vec[mid] == val) ; ; 10 r10 = r0;
return mid; flle "flnd.C" 6,7.8 6,7.4 nop(6),7.8 nop(6),7.4
else |f (Vec[mid] - val) Sprrogram Ilﬁndll Example- end(4,7)&(2,9) (4,7)&(2,9) end(4,7)&(2,9) 4,7)&(2,9)

low = mid + 1;
7,4,5

loop repeats <=7 times; One instruction

else
. . 4,7)&(2,9)
. JUHE = I = 403 end_loop expands to four s 22 0
return -1; /* not found */ flow-graph steps ac,/ \\‘not ac
3

