
Bound-T
tool

Loop
bounds

DSP
particulars

How?

Why?

 1 do 9 until ac;
 2 if eq jump 33 (la);
 3 lcntr=50, do 7 until lce;
 4 if eq jump 7;
 5 r5 = r0 + 1;
 6 r6 = r0 - 1;
 7 r7 = r5 * r6;
 8 r8 = r7 + r5;
 9 r9 = r5 + r8;
10 r10 = r0;

Loops should be controlled by counters.
Loop-bounds should be static, or derived
from static subprogram arguments.

Niklas.Holsti @ ssf.fi
Thomas.Långbacka @ ssf.fi
Sami.Saarinen @ ssf.fi

Find worst
case with
Bound-T

Design
real-time
software

Measure
timing of
test cases Ok

Real-world
operation

Real-time events

Usually
fast
enough

Worst case
not tested,
but happens

Ok
Real-world
operation

Always
fast
enough

Crash
and
burn

Fail

Static analysis of the worst case
ensures that real-time deadlines
are always met

Libraries
Kernel

Statically analyses an executable
binary program, gives bounds on
worst-case execution time (WCET)

Source code
(C, Ada, Asm)

Compiler
& linker

Executable
binary

Bound-T
Analysis phases:

Find worst-case path

Decode instructions
 Analyse control flow

 Analyse subprogram calls
Bound loop iterations

User assertions
on loop bounds,
variable values,
call counts, etc.

Methods used in Bound-T include:
Loop bounds: Presburger Arithmetic (Omega System)
Worst case: Integer Linear Programming (lp_solve)

Coded with the GNU Ada Compiler GNAT from ACT.

Problem is generally unsolvable; made
tractable by coding rules and guidance
from user-given assertions

ESTEC contract No. 13362/99/NL/FM

Bound-T platforms: Sun Solaris (... Linux, Win NT)
Bound-T targets: ADSP-21020, Intel-8051, ...

Complex DSP instructions are a
challenge for static analysis

Architectural pipelines
Zero-overhead loops
Delayed branches

Flow graphs

Enter Foo()

Return

Call graphs

Foo

Main

Solve

SyncMalloc

WCET for calls

Main 345
. Foo 113
. . Malloc 55
. Solve 99
. . Malloc 43
. . Sync 12

1,2,3
none

2,3,4
(2,9)

3,4,5
(2,9)

nop(3),nop(4),33
none

.not eq
 .eq

4,5,6
(4,7)&(2,9)

.not eq

5,6,7
(4,7)&(2,9)

 .eq

nop(5),nop(6),7
(4,7)&(2,9)

6,7,8
end(4,7)&(2,9)

6,7,4
(4,7)&(2,9)

nop(6),7,8
end(4,7)&(2,9)

nop(6),7,4
(4,7)&(2,9)

C = 0 C > 0 C = 0 C > 0

7,4,5
(4,7)&(2,9)

7,8,9
end(4,7)&(2,9)

 .ac .not ac

Example:
One instruction
expands to four
flow-graph steps

Simple, counter loops are bounded
automatically; others need assertions

#define VEC_LEN 100
float sum_vector (float vec[])
{ int i;

float sum = 0.0;
for (i = 0; i < VEC_LEN; i++)

sum += vec[i];
return sum;

}

Data-flow analysis
in Bound-T finds:

int find (int *vec, int val)
{ int low = 0, high, mid;

high = VEC_LEN - 1;
while (low <= high) {

mid = (low + high) / 2;
if (vec[mid] == val)

return mid;
else if (vec[mid] < val)

low = mid + 1;
else

high = mid - 1;
}
return -1; /* not found */

}

No counter; user
asserts bounds:

 file "find.c"
 subprogram "find"
 loop repeats <= 7 times;
 end_loop

Counter is i
Initially i = 0
Finally i = 99
Thus 100 repeats.

Worst-Case Execution Time Analysis
for Digital Signal Processors

