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Worst-Case Execution Time Analysis
for Digital Signal Processors

Static analysis of the worst case

ESTEC contract No. 13362/99/NL/FM

Bound-T Statically analyses an executable
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Problem is generally unsolvable; made

Analysis phases:

Decode instructions
'/ Analyse control flow

Bound loop iterations

[ Analyse subprogram calls

Enter Foo0) Find worst-case path How? tractable by coding rules and guidance
from user-given assertions
lem iig Loops should be controlled by counters.
’ clz/cl)alloc 55 Loop-bounds should be static, or derived
_Solve 99 from static subprogram arguments.
.. Malloc 43
Return .. Sync 12 Methods used in Bound-T include:
Loop bounds: Presburger Arithmetic (Omega System)

Flow graphs Call graphs WCET for calls Worst case: Integer Linear Programming (Ip_solve)

Sun Solaris (... Linux, Win NT)
ADSP-21020, Intel-8051, ...

Bound-T platforms:

Bound-T targets: Coded with the GNU Ada Compiler GNAT from ACT.

DSP
particulars

Complex DSP instructions are a
challenge for static analysis

1,2,3

Loop
bounds

Simple, counter loops are bounded
automatically; others need assertions

none

Data-flow analysis
in Bound-T finds:

#define VEC_LEN 100
float sum_vector (float vec[])
{ inti;
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Zero-overhead loops
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low = mid + 1;
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loop repeats <=7 times; One instruction

else
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