Bound-T timing analysis tool

find_marks

User Manual

Version 1

TR-UM-004 2009-04-04 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written and is currently maintained at Tidorum Ltd by Niklas Holsti.

Copyright 2009 Tidorum Ltd.

This document can be copied and distributed freely, in any format or medium, provided that it is kept
entire, with no deletions, insertions or changes, and that this copyright notice is included, prominently
displayed, and made applicable to all copies.

Document reference: TR-UM-004

Document issue: Version 1

Document issue date: 2009-04-04

find_marks version: 1

Last change included: = BT-CH-0169

Web location: http://www.bound-t.com/find-marks-manual.pdf
Trademarks:

Bound-T is a trademark of Tidorum Ltd.

Credits:

This document was created with the free OpenOffice.org software, http.//www.openoffice.org. We are
grateful to Ada Core Technology (ACT) and the Free Software Foundation (FSF) for the GNAT Ada
compiler that we use to compile find_marks.

http://www.bound-t.com/user-manual.pdf
http://www.openoffice.org/

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product find marks described here. For the most recent version of this
document, please refer to the web-site http://www.tidorum.fi/. As find_marks is distributed
under the GNU Public Licence, users may also change the program. This document describes
the program as Tidorum provides it.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi or via telephone, telefax, or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 - 16:00 local time. In summer daylight savings time makes the local time equal GMT + 3
hours.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186
Fax: +358 (0) 42 563 9186
Web: http://www.tidorum.fi/
E-mail: info@tidorum.fi

Mail: Tiirasaarentie 32

FI-00200 Helsinki
Finland

iii

mailto:info@tidorum.fi
http://www.tidorum.fi/
mailto:info@tidorum.fi
mailto:info@tidorum.fi
http://www.tidorum.fi/

Contents

1 INTRODUCTION 1
1.1 SCOPE @NA PUIPOSE. e et ittt ettt ettt e et et ettt et e e e e et e e ea et et e et e et aaenaennas 1
1.2 Overview of this docUMENt.... ..o e 3
2 USING FIND MARKS 4
2.1 The find_marks command liN€...........cooviiiiiiiiiiiiii s 4
2.2 Command-ling OPLiONS.....iuiie 4
2.3 Error and Warning MESSA0ES. ...ttt ettt 6
3 WRITING MARKS IN SOURCE CODE 9
3.1 Supported programming l@NQUagES.......c.viuiiiiiieiiiiiie e 9
3.2 C0re TXE FOMM e 9
3.3 Marks in Ada COA@. .. uinii e e 11
3.4 MArKS iN € COUR. . iuuiiiiiiiie et e eans 11
3.5 Marks with selectable prefix and suffix strings...........ccocoviiiiiii, 12
4 MARK DEFINITION FILE FORMAT 14
4.1 INEFOAUCTION. e 14
4.2 Format of mark definitions. ..o 14
4.3 How find_marks uses the format...........coooiiiiiiiii 15
5 ARCHITECTURE OF FIND MARKS 17
5.1 MOAUIES. .. 17
5.2 ClasSeS AN LY PSS . it i 17
5.3 Adding a new mark format.........coooiiii i 18
Tables
=L o] LT R =T o T=T =Y o o] (o 1= 5
Table 2: Options for choosing iINPUL [aNQUAaGE. ..o e 5
Table 3: Language from file-name SUFfiX.... ..o 6
Table 4: Warning and ErT0r MESSa0ES. .. ittt iit ettt ee et e e et e et r e et e eans 6
Table 5: Supported languages and mark formats.........ccocoiiii i 9
Table 6: Mark definition flelds. 14
Table 7: Keywords for the Part field.... ... 15
Table 8: Keywords for the Relation field. ... 15
Table 9: Modules in fiNd_Marks..... ..o 17
Figures
Figure 1: Inputs, outputs, and context of find_marks..........ccoooiiiiiiiiii e, 3

iv

1.1

INTRODUCTION

Scope and purpose

The Bound-T tool

This document is the User Manual for the program called find marks, a program provided by
Tidorum Ltd under the GNU Public Licence (GPL). The find marks program is an auxiliary
program that is used to prepare input for the Bound-T program, also from Tidorum. Bound-T is
a tool for developing real-time software — computer programs that must run fast enough,
without fail. The main function of Bound-T is to compute an upper bound on the worst-case
execution time of a program or subprogram. Bound-T does that by static analysis of the
machine-code form of the program. For more information about Bound-T please refer to the
User Guide, at http://www.bound-t.com/user-guide.pdf, or the Reference Manual, at

http://www.bound-t.com/ref-manual.pdf.

Assertions, and the need to identify program parts

The task Bound-T tries to solve is generally impossible to automate fully. Finding out how
quickly the target program will finish is harder than finding out if it will ever finish — the
famously unsolvable “halting problem”. For difficult target programs the user can control and
support Bound-T's automatic analysis by writing assertions. An assertion is a statement about
the target program that the user knows to be true and that bounds some crucial aspect of the
program's behaviour, for example the maximum number of a times a certain loop is repeated.

Assertions are written in text files and expressed in the Bound-T assertion language as
described in the Bound-T Assertion Language manual, http://www.bound-t.com/assertion-
lang.pdf. Each assertion must somehow identify the part or parts of the target program to
which the assertion applies. For example, an assertion on the maximum number of repetitions
of a loop must identify which loop is meant. The Bound-T assertion language provides several
ways to identify program parts. One of these ways is to use the source-code position of the part,
which concretely means to identify the part by the source-line number and source-file name of
some source-code line in or close to this part.

Consider, for example, the following C function add_up, where line numbers are shown on the
left and only the start of the function is shown in detail:

33

34 int add up (int A[], int n)
35 {

36 int sum = 0, 1i;

37 for (i = 0; i < n; i++)
38 {

39 sum += A[i];

40 A[i] = 0;

41 }

67 }

68

The function contains a loop, for (i ...), for which Bound-T may not be able to find repetition
bounds automatically, by analysis, which means that the user must supply the bounds by an
asssertion.

find_marks user manual Introduction 1

http://www.bound-t.com/assertion-lang.pdf
http://www.bound-t.com/assertion-lang.pdf
http://www.bound-t.com/ref-manual.pdf
http://www.bound-t.com/user-guide.pdf

If the user chooses (or is forced) to identify the loop by its source-code position, the assertion
could be expressed as follows in the Bound-T assertion language:

subprogram “add_up”
loop on line 37 repeats 21 times; end loop;
end “add_up”;

The compiler and linker that generate the target program from the source code also create a
mapping between source-code positions and machine-code addresses. This mapping is part of
the debugging information in the executable target program (for example, an ELF file) and is
accessible to Bound-T. When Bound-T analyses the subprogram add_up it creates the machine-
code control-flow graph, which shows (among other things) the machine-code addresses of the
instructions in the loop. If the compiler-generated source-to-object mapping is good enough,
Bound-T can connect the machine-code address of the loop to “line 37” in the source code, and
thus understand that this assertion should be applied to this loop.

Instability of line numbers, and countering it by offsets or marks

So far so good, but what happens if the target program is modified by adding or removing
some lines of code before the function add up, in the same source-code file? Then all line
numbers in add_up will change, so the line number in the assertion must also be changed. But
updating assertion files in this way is cumbersome and error-prone.

The Bound-T assertion language offers two ways to solve this problem. One way is to use line-
number offsets instead of absolute line numbers; this is explained in the Assertion Language
manual and will not be discussed further here. The other way is to use marks embedded in the
source code, which is where find_marks is useful and is our focus in this manual.

Example of source-code marks

Consider the source code of add_up with one additional comment — a mark:

33 e

34 int add _up (int A[], int n)
35 {

36 int sum = 0, 1i;

37 /**Mark line below “summer” */
38 for (i = 0; 1 < n; i++)
39 {

40 sum += A[i];

41 A[i] = 0;

42 }

68 }

69

With the help of the find marks program Bound-T can now know that the marker-name
“summer” means line 38 of this source-code file. The loop-bound assertion can therefore be
written using this marker name instead of an actual line number:

subprogram *“add_up”
loop marked “summer” repeats 21 times; end loop;
end “add _up”;

This assertion is robust against changes in the target program, as long as the “summer” mark
remains on the line before the start of the loop.

Introduction find_marks user manual

So what does find_marks do?

The find_marks program reads source-code files, finds the mark lines, and outputs a table that
shows the source-code position (file name, line number) of each mark. The table is stored in a
text file, called a mark-definition file, that Bound-T reads together with the assertion files.
Figure 1 below shows the inputs and outputs of find mark and Bound-T. The area outlined by
the dashed rectangle is the focus of this manual.

Source code +—»(Compiler & linker Lipiziizs
. \ Kernel

: Find marks : /

Machine code
\ . program

Source-code
mark positions

User assertions
on loop bounds,
variable values,
call counts, etc.

Analysis
results

Bound-T

) 4

Figure 1: Inputs, outputs, and context of find_marks

1.2 Overview of this document

This document is organised into chapters as follows:

Chapter 2 shows how find_marks is used, that is, how to write a find marks command and
what the command-line options and arguments mean. This chapter also lists all warning
messages and error messages from find_marks, with explanations and advice on solving the
problems.

Chapter 3 explains how to add marks to source-code files in any of the formats and
programming languages that find_marks currently supports.

Chapter 4 defines the format of the mark-definition files that find marks produces and
Bound-T consumes. This chapter is useful if you want to write a new mark-finder program
from scratch: it specifies the format of the output that your program should produce.

Chapter 5 describes the internal architecture of find marks to help you extend or modify the
program. The chapter ends with advice on how to add a new programming language (a
new mark format) to find_marks.

find_marks user manual Introduction 3

2

USING FIND_MARKS

2.1 The find_marks command line
The find_marks program is executed from the command line and given a list of arguments that
can contain any mixture of input (source-code) file names and options:
find marks argumentl argument2
The arguments that start with a hyphen '-' are interpreted as options. The other arguments are
interpreted as the names of source-code files to be scanned for marks. The order of the
arguments is meaningful: options apply to all following input files until overridden by new
options. For example, the following command scans the file 1libs.c under the default
options and the file aux.txt under the option -c:
find marks libs.c -c aux.txt
Storing the mark definitions in a file
When find marks finds a mark in an input file it writes the mark definition on the standard
output channel. Thus, use the '>' redirection operator to store the output in a file, as in:
find marks libs.c -c aux.txt >libs.marks
Combining the results of several find_marks runs
Mark definition files are “flat” text files with one mark definition per line and no headers or
trailers. Thus you can use simple file concatenation to combine mark definitions from several
executions of find_marks. For example, you can use the appending redirection operator '>>" if
your command shell supports it:
find marks libs.c >libs.marks
find marks -c aux.txt >>libs.marks
The file 1ibs.marks then contains both the marks from libs.c and those from aux.txt.
Errors and warnings
Errors and warnings from find_marks appear on the standard error channel. See Table 4 below.
2.2 Command-line options
Command-line options for find marks fall into two groups: firstly, options significant to the
general operation of find_marks and listed in Table 1 below; and secondly, options that define
the type of source-code in the following input files, which defines the format of the marks in
those files. The options in the second group are listed in Table 2 below.
All options are case-sensitive: the option -ada cannot be written -ADA.
4 Command-line options find_marks user manual

Table 1: General options

Option Meaning and default value
At present there are no general options
Table 2: Options for choosing input language
Option Meaning and default value
-ada Function Tells find_marks that the next input files contain Ada source
code, until the next language-choosing option is found.
See section 3.3 for the Ada mark format.
Default See -auto.
-auto Function =~ Makes find_marks choose the source language for the next
input files based on the suffix (“file type”) of the file name.
Default This is the default. The -auto option is useful to override a
language chosen by earlier options.
-C Function Tells find_marks that the next input files contain C source
code, until the next language-choosing option is found.
See section 3.4 for the C mark format.
Default See -auto.
-com=comment-prefix Function Tells find_marks that the next input files, until the next
-pre=mark-prefix language-choosing option is found, contain source code in
some unspecified language but with marks defined by the
given comment-prefix and mark-prefix strings and an optional
mark suffix string (see the -suf option).
See section 3.5 for this mark format.
Default See -auto.
-suf=mark-suffix Function ~ Augments the -com and -pre options by specifying a mark suffix
string.
Note that this string is not a file-name suffix.
See section 3.5 for this mark format.
Default By default the mark suffix string is null, which means that

mark lines have no ending suffix — the list of marker names is
terminated only by the end of the mark line.

The -auto option

The choice of an input language, for example with the option -c, is in effect for all following
input files on the command line, until overridden by another choice. Take, for example, this

command:

find marks libs.c -ada aux.txt main.c >marks.txt

find_marks user manual

Command-line options 5

2.3

This command scans the file 1libs.c for markers in the C format, chosen by the file-name
suffix (.c). The file aux.txt is scanned for markers in the Ada format, chosen by the
preceding option -ada. However, this option is in effect also for the next file main.c , which is
perhaps not intended. The command can be altered in several ways to use the C language
format for marks.c:

+ Move the file-name to an argument position that is not controlled by the -ada option:
find marks libs.c main.c -ada aux.txt >marks.txt

+ Add an option to choose the right language before the file-name:
find marks libs.c -ada aux.txt -c main.c >marks.txt

+ Use the option -auto to override the earlier option -ada and restore the default method for
choosing the language based on the file-name suffix,:

find marks libs.c -ada aux.txt -auto main.c >marks.txt
Table 3 below shows the mapping from file-name suffix to assumed programming language

and mark format. Note that suffixes are compared in a case-insensitive way. For example, the
suffix ADB is equivalent to adb .

Table 3: Language from file-name suffix

File-name suffix Language
adb Ada
c C

Error and warning messages

Problems with the command-line options or the marks written in the input files can make
find_marks issue a warning or error message on the standard error channel. The following
table lists all these messages in alphabetical order, ignoring punctuation characters and letter
case. For each message, the table explains the problem in more detail and may suggest possible
reasons for the problem and specific solutions. Variable parts of the messages are shown in
italic style and are not included in the alphabetical ordering.

Table 4: Warning and error messages

Message Meaning and remedy

file:Cannot find this file. Reasons There seems to be no real file with this file name.

Action Correct the command line (file-name mistyped).

file:Cannot open this file. Reasons An attempt to open the source-code file named on the

command line failed although the file seems to exist.
Perhaps the file access permissions (“modes”) do not let
you read the file.

Action Correct the file access permissions.

Errors and warnings find_marks user manual

Message

Meaning and remedy

file:Cannot read, perhaps not a text Reasons
file.

The file named on the command line could be opened,
but could not be read as text. Perhaps the file is a non-
text file such as a directory.

Action Name a readable source-code file.
file:No format chosen. Reasons No mark format (programming language) was chosen
by options or by file-name suffix for this file.
Action Insert such an option on the command line before this

file name.

file:line:No markable line above this Reasons
line.

The mark line in this file, on this line number, uses the
above keyword to indicate that the marked line is the
preceding markable line. But there is no earlier
markable line in this file.

Action Correct the mark line.
file:line:No markable line for n Reasons There are n pending marks that are defined to mark the
pending “below” marks. next markable line below the mark line, but this input
file has been read to its end (at line) without finding
any such markable line.
Action Correct the marks in this file.
Option “-option” not recognized. Reasons This command-line -option is not one that find_marks
knows about.
Action Correct the command line (option mistyped).

file:line:“word” overrides earlier part Reasons
keyword.

The mark line in this file, on this line number, uses
more than one keyword defining the part kind.

Action Correct the mark line. Use at most one “part” keyword.
file:line:“word” overrides earlier Reasons The mark line in this file, on this line number, uses
position keyword. more than one keyword defining the position of the

marked line.

Action Correct the mark line. Use at most one “position”

keyword.
file:line:“word” overrides earlier Reasons The mark line in this file, on this line number, uses
relation keyword. more than one keyword defining the relation of the
marked part to the marked line.
Action Correct the mark line. Use at most one “relation”

keyword.

Registering too many scanners (over Reasons
max).

Action

The number of mark formats / programming languages
registered exceeds the size max of the table.

Increase the constant
Marks.Scanners.Max_Number_Scanners.

file:line:Source-file line is too long Reasons
(over max) characters).

Action

This line in this file is longer (contains more characters)
than the maximum max supported by find_marks.

Break the line into shorter parts, or increase the
constant Find_Marks.Max_Line_Length.

find_marks user manual

Errors and warnings 7

Message

Meaning and remedy

file:line:Too many “below” marks

(over max) before the next markable

line.

Reasons

Action

When find_marks finds a mark line that uses the posi-

tion keyword below it cannot emit the mark definition
until the next markable line in this source file is found.
The buffer has room for up to max pending marks, but
the mark at this line no longer fits.

Increase the constant Find_Marks.Max_Pending Marks.

Errors and warnings

find_marks user manual

3.1

WRITING MARKS IN SOURCE CODE

Supported programming languages

Marks in source-code files are usually written as comments, because we usually want the
compiler to ignore the marks. Each programming language has its own format for comments
and so the format of marks also depends on the programming language. At the time of writing
the find marks program supports the programming languages listed in Table 5 below, as well
as a generic kind of mark that is defined by the command-line options -com, -pre, -suf. The
example given for the generic mark format assumes -pre=";>>' and -suf="".

Table 5: Supported languages and mark formats

Language Example mark line Mark prefix Mark suffix =~ Comment prefix

---Mark line below “scan” ---Mark -

/**Mark line below “scan” */ /**Mark */ /*

Generic i>> line below “scan” . Set by -pre Set by -suf Set by -com

3.2

Markable lines

The purpose of a source-code mark is to give a name to a part of the machine code of the
program to be analysed. This is done indirectly by giving a name to a source-code line that the
compiler connects to the relevant instruction(s) in the machine code. It is therefore important
to mark lines that are so connected, which means that the mark line itself — being a comment
and not giving rise to any code — is not a good candidate, and it is probably better to use a
nearby line that contains functional source code. For each programming language (each mark
format) in find_marks some source-code lines are defined as markable lines.

The definition of a markable line depends on the chosen programming language, but for all
languages currently supported a markable line is defined as any line that is not completely
blank and does not start with the comment prefix defined in Table 5 above.

Case sensitivity

All text in a mark line — all prefixes, suffixes, keywords, and marker names - is processed in a
case-sensitive way. You cannot write the keyword call as CALL.

What follows

While the initial and final parts of the mark lines differ according to the programming
language, the core text of a mark line currently has the same form for all languages. The next
section describes the core text form, and the later sections in this chapter discuss the mark
formats for each supported input language.

Core text form

In all the currently supported mark formats a mark line consists of a prefix, a core text that
actually defines the marks, and perhaps a suffix that terminates the mark text. The prefix and
possible suffix depend on the chosen mark format (chosen programming language).

find_marks user manual Writing marks in source code 9

Property keywords followed by marker names

The format of the core text is identical in all supported mark formats. The core text starts with
zero or more keywords that define the properties of the mark. The property list is followed by a
list of zero or more marker names.

The property keywords and the marker names are separated from each other and from the
prefix and suffix (if present) by strings of whitespace characters. Here are some examples of
such core texts:

Keywords ‘ Marker names

call above|“rejection” “never”

loop spanning this line|“reduction”

Mark properties

A mark has three properties that can be defined by keywords, or left undefined by default:
« The kind of program part that is marked: a subprogram, a call, or a loop.
+ The position of the marked line relative to the mark line: above, here, or below.

« The relation of the part and the marked line: the part is this marked line, or it is the part
containing the marked line, or the part spanning the marked line.

The part property is irrelevant to the operation of find marks which simply conveys the value
from the mark line in the source-code file to the mark definition in the output file. The
significance, if any, of the part property depends on its use down-stream, when Bound-T reads
and uses the mark definition file. This will be explained in the Bound-T assertion language
manual.

The position property defines which source-code line number find marks assigns to the mark,
that is, which line is the marked line. For here, the marked line is the mark line itself. For
above, it is the closest preceding markable line. For below, it is the closest following markable
line.

The relation property, like the part property, is irrelevant to the operation of find marks. The
significance, if any, of the relation property depends on its use down-stream.

The keywords can be written in any order, but only one keyword for each property; you cannot
override a property once defined. The keyword line can appear at any point and has no
meaning; it is used just to make the text more grammatically pleasing. For example, loop
containing line above.

Marker names

A marker name is a string delimited by whitespace (thus, the string cannot itself contain
whitespace characters). If you want to include commas (,) or quotes (#) in the name, you
must enclose the name in quotes and write each quote in the name itself as two quotes. For
example, the name a”b is written as “a” "b".

10

Writing marks in source code find_marks user manual

3.3

3.4

Marks in Ada code

Mark format

Mark lines in Ada source-code files have the following form:
 optional leading whitespace
 the mark prefix ---Mark

+ the core text (keywords and marker names).

Examples
-—--Mark “simple”

---Mark call here “anomaly” output

Markable lines

An Ada source-code line is considered a markable line if it contains some non-whitespace text
and that text does not start with the Ada comment prefix —-- (two consecutive hyphens).

Since mark lines start with ---Mark they are not themselves markable lines.

File-name suffix

The Ada format is assumed (under -auto) when the input file name has the suffix adb . This is

the default suffix that the GNU Ada compiler GNAT uses for Ada subprograms and package
bodies.

Marks in C code

Mark format

Mark lines in C source-code files have the following form:
- optional leading whitespace

+ the mark prefix /**Mark

+ the core text (keywords and marker names)

+ an optional mark suffix that is */

There must be some whitespace between the last marker name and the mark suffix. Any text
on the line after the mark suffix is ignored; it can be compilable C code.

Examples
/**Mark simple */
/**Mark loop spanning this line “polling”

/**Mark call here “anomaly” output */ report_error (1, “foo”);

find_marks user manual Writing marks in source code 11

Markable lines

A C source-code line is considered a markable line if contains some non-whitespace text and
that text does not start with the C comment prefix /* .

Since mark lines start with /**Mark they are not themselves markable lines.

The C language allows multi-line or “block” commments in which the first line has the
comment prefix /* , the last line has the comment suffix */ , and the lines in between can
start with any text. The lines in between can thus be classified as markable lines although they
are really comment lines. Avoid such block comments between a mark line and the intended
marked line.

File-name suffix

The C format is assumed (under -auto) when the input file name has the suffix c .

3.5 Marks with selectable prefix and suffix strings
The options and their meaning
The command-line options -com, -pre, -suf control the operation of the generic mark format
in find marks, and also select this format for scanning the source files that are named after
these options on the command line.
The -com option sets the comment prefix which controls the definition of markable lines: A
source-code line is markable if it contains some non-whitespace text and that text does not
start with the comment prefix.
The -pre option sets the mark prefix. A source-code line is a mark line if it contains some non-
whitespace text and that text starts with the mark prefix.
The -suf option sets the mark suffix, which is optional. If the mark suffix is not a null string,
the core text of a mark can be terminated by the appearance of the mark suffix as a
whitespace-delimited non-whitespace string. The mark suffix is still optional — the core text can
still be terminated by the end of the mark line, too.
Mark lines use the common core text format between the prefix and the suffix (if any): a list of
keywords followed by a list of marker names, all separated by whitespace.
Usage
To define and choose the generic mark format for a source file, you must define both -com
and -pre before the source-file name argument. Take for example the following command:

find marks -com=';' lib.c -pre=';;;' sub.asm

Although -com is defined before the file-name 1ib.c, -pre is not and so the generic mark
format is not yet chosen. The file 1ib.c is scanned using the mark format chosen by the file-
name suffix, which means the C format.

12 Writing marks in source code find_marks user manual

However, before the file-name sub.asm both -com and -pre are defined. This completes
the parameters for the generic format so sub.asm is scanned with the generic mark format
using a single semicolon as the comment prefix and a triple semicolon as the mark prefix. The
mark suffix is not defined so no suffix is used. To make this operation clearer, it is better to
write the two options together, thus:

find marks lib.c -com=';' -pre=';;;' sub.asm

After both -com and -pre are set once it is enough to use either of them to choose the generic
mark format for the following files. For example:

find marks -com=';' -pre=';;;' sub.asm -auto lib.c -pre='#' fuu.mac

This command scans sub.asm with the generic mark format using a single semicolon as the
comment prefix and a triple semicolon as the mark prefix; then it scans 1lib.c with the C
mark format (based on -auto and the .c suffix); and finally it scans fuu.mac with the
generic mark format, still using a single semicolon as the comment prefix but now using a hash
character as the mark prefix.

File-name suffix

The generic mark format is never chosen based on a file-name suffix. It can only be chosen by
the options -com and -pre.

find_marks user manual Writing marks in source code 13

4

4.1

4.2

MARK DEFINITION FILE FORMAT

Introduction

This chapter defines the format (syntax) and part of the meaning of mark definition files.

Section 4.2 defines the general format of the data fields and the general meaning of some of
the data fields.

Section 4.3 explains how find_marks uses the format. Other tools that produce mark definition
files may use the format differently.

This chapter does not explain how Bound-T uses mark definition files. That task is left to the
Bound-T manuals, specifically the Assertion Language Manual.

Format of mark definitions

A mark definition file is a text file in which each line defines one mark. The file uses the CSV
(comma-separated variable) style.

Each line in a mark definition file has five fields separated by commas (','). The last field is
followed by end of line, not by a comma. Table 6 below describes the fields. The field names
are defined only for use in this description and do not appear as such in the file.

Table 6: Mark definition fields

Field Name Type Content

1 Marker String The marker name.

File String The name of the source file that contains the marked line.

Line Positive integer The number of the marked source-code line in the file.

2
3
4 Part Keyword The kind of program part that is marked.
5

Relation ~ Keyword The position and/or logical relation of the marked program
part with respect to the marked source-code line.

String fields

A field of type string contains a string of characters. If the string is not enclosed in quote marks
(") it cannot contain commas or quote marks. A quote-enclosed string can contain commas
and can contain quote marks if each such quote mark is written as two quotes (“).

Integer fields

A field of type integer contains a string of decimal digits (0123456789) which represent an
unsigned integer number in the usual way (base 10).

The integer in the Line field must be positive. The first line in a source-code file is line
number 1.

14

Mark file format find_marks user manual

Keyword fields

A field of type keyword contains one of a finite set of strings; these strings are called keywords.
Keywords cannot contain commas or quotes and are not enclosed in quotes. The set of
keywords depends on the field. The following tables define the keywords, and perhaps some of
their meaning, for each keyword field.

Table 7: Keywords for the Part field

Keyword Meaning

any The kind of part that is marked is unspecified.

subprogram A subprogram (procedure, function) is marked.

loop A loop is marked.

call A subprogram call is marked.

Table 8: Keywords for the Relation field

Keyword Meaning

any The position and relation of the marked part to the marked line are
unspecified.
here The marked part consists of or coincides with the marked line.
above The marked part lies at or above (at equal or smaller line numbers

than) the marked line, but in the same file.

below The marked part lies at or below (at equal or larger line numbers
than) the marked line, but in the same file.

contain The marked part is an “extended” part, for example a loop, and
some component (instruction) of this part is at the marked line.

span The marked part is an “extended” part, for example a loop, and the
number of the marked line falls in the range of source-line numbers
connected to the marked part.

Examples

For the add_up example in section 1.1 find marks creates this mark definition line, assuming
that the name of the source-code file is subs.c:

“summer” ,subs.c,38,any,below

How find_marks uses the format
When find marks finds a mark line (and its marked line) in an input file it creates a mark
definition line as follows:

« The Mark field is simply the marker name, perhaps with enclosing quotes and doubled-
quote encoding added.

« The File field is the source-file name exactly as it appears on the find marks command line,
perhaps with enclosing quotes and doubled-quote encoding added.

find_marks user manual Mark file format 15

+ The Part field contains the keyword that represents the “part” property of the mark, as
described in section 3.2 (page 10).

« The Relation field contains a keyword that represents the combined “position” and
“relation” properties of the mark. For details see the source code of find marks, but the
main point is that the mark-line keywords containing and spanning are translated to the
Relation-field keywords contain and span, respectively.

If the mark line does not specify the kind of the marked part, or the position or relation of the
marked line to the mark line, the keyword any is put in the Part or Position fields, respectively.

16 Mark file format find_marks user manual

5 ARCHITECTURE OF FIND MARKS

5.1 Modules

The find_marks program is written in Ada and consists of the Ada modules and Ada source-
code files described in Table 9 below.

Table 9: Modules in find_marks

Module Role Source files
Find_Marks Main procedure (main program). find_marks.adb
Marks Root package for processing marks and generating marks.ads
mark definition files. marks.adb
Marks.Formats Package that selects the mark formats to be marks-formats.ads
included in a given version of find_marks. marks-formats.adb
Marks.Scanners Package that defines the abstract root class for marks-scanners.ads
language-specific mark formats. marks-scanners.adb
Marks.Scanners.Ada Package that defines the Ada mark format. marks-scanners-ada.ads
marks-scanners-ada.adb
Marks.Scanners.C Package that defines the C mark format. marks-scanners-c.ads
marks-scanners-c.adb
Marks.Scanners.Fixed Package that defines a generic mark format marks-scanners-fixed.ads
parametrized by some prefix and suffix strings. marks-scanners-fixed.adb

Marks.Scanners.Opt ~ Package that defines the mark format controlled by marks-scanners-opt.ads
the command-line options -com , -pre , -suf . marks-scanners-opt.adb

5.2 Classes and types

The only important class (or tagged type hierarchy in Ada terms) in find marks is the class
rooted at the abstract type Marks.Scanners.Scanner_T. An object in this class (necessarily of a
derived type) represents one specific mark format. Such objects can be “registered” in the set
of supported formats (Marks.Scanners.Set) and can then react to command-line options and to
the suffixes of input-file names and, when chosen for an input file, are invoked to scan input
lines to find marks in that file.

The derived types in this class are currently the following:
» Marks.Scanners.C_Scanner_ T, which defines the C format of marks.

» Marks.Scanners.Fixed.Scanner T, which defines a generic format parametrized by prefix and
suffix strings.

« Marks.Scanners.Opt.Opt_Scanner_ T, which is derived from Fixed.Scanner T and implements
the command-line options -com , -pre , -suf .

The Ada mark format is defined as an object of type Marks.Scanners.Fixed.Scanner T in
Marks.Scanners.Ada. It does not have a type of its own. The C scanner could also have been so
defined, but it serves as an example of defining a mark format by a specific derived type.

find_marks user manual Architecture 17

5.3

Adding a new mark format

You can extend find_marks to support a new mark format (a new source-code language) in one
of two ways:

If the format can be described by fixed prefix and suffix strings, you can simply add an
object of the type Marks.Scanners.Fixed.Scanner T with those strings as component values.
For an example, see Marks.Scanners.Ada.

Otherwise, you must derive a new type from Marks.Scanners.Scanner T (or from Fixed.-
Scanner_T), write new format-specific operations to override the primitive operations that
handle command-line options and file-name suffixes and scan source-code lines, and
declare an object of this new type. For an example, see Marks.Scanners.C.

We recommend that you define a new package for your additions and name it
Marks.Scanners. <language >, analogous to Marks.Scanners.C.

In both methods, remember to:

Invoke Marks.Scanners.Register to register the object that defines the new format in the set
of available mark formats (“scanners”). This is best done in the elaboration statement block
at the end of your package body.

In Marks.Formats add a “with” clause for the package that declares the object that defines
the new format. This ensures that the package's statement block is executed at elaboration
time (start-up) to register the new scanner object.

Tidorum will be glad to help you extend find marks. Do not hesitate to ask us for advice or
assistance!

Tiirasaarentie 32
FI-00200 Helsinki, Finland
. www.tidorum.fi
Tidorum Ltd Tel. +358 (0) 40 563 9186
Fax +358 (0) 42 563 9186
VAT FI 18688130

18

Architecture find_marks user manual

	1Introduction
	1.1Scope and purpose
	The Bound-T tool
	Assertions, and the need to identify program parts
	Instability of line numbers, and countering it by offsets or marks
	Example of source-code marks
	So what does find_marks do?

	1.2Overview of this document

	2Using find_marks
	2.1The find_marks command line
	Storing the mark definitions in a file
	Combining the results of several find_marks runs
	Errors and warnings

	2.2Command-line options
	The -auto option

	2.3Error and warning messages

	3Writing Marks in Source Code
	3.1Supported programming languages
	Markable lines
	Case sensitivity
	What follows

	3.2Core text form
	Property keywords followed by marker names
	Mark properties
	Marker names

	3.3Marks in Ada code
	Mark format
	Examples
	Markable lines
	File-name suffix

	3.4Marks in C code
	Mark format
	Examples
	Markable lines
	File-name suffix

	3.5Marks with selectable prefix and suffix strings
	The options and their meaning
	Usage
	File-name suffix

	4Mark Definition File Format
	4.1Introduction
	4.2Format of mark definitions
	String fields
	Integer fields
	Keyword fields
	Examples

	4.3How find_marks uses the format

	5Architecture of find_marks
	5.1Modules
	5.2Classes and types
	5.3Adding a new mark format

