Bound-T time and stack analyzer

Application Note

Atmel AVR

Version 1

TR-AN-AVR-001 2010-02-14 Tidorum Ltd.

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written at Tidorum Ltd. by Niklas Holsti.
The document is currently maintained by the same team.

Copyright © 2009, 2010 Tidorum Ltd.

This document can be copied and distributed freely, in any format, provided that it is kept entire, with
no deletions, insertions or changes, and that this copyright notice is included, prominently displayed,
and made applicable to all copies.

Document reference: TR-AN-AVR-001
Document issue: Version 1
Document issue date: 2010-02-14

Bound-T/AVR version: 4a2
Last change included: BT-CH-0219
Web location: http://www.bound-t.com/app-notes/an-avr.pdf

Trademarks:
Bound-T is a trademark of Tidorum Ltd.
AVR is a trademark of Atmel Corporation.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

http://www.bound-t.com/app-notes/an-avr.pdf
http://www.openoffice.org/

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent version of this
document, please refer to the web address http://www.bound-t.com/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone, telefax or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours, and office hours are
9:00 -16:00 local time.

Cordially,
Tidorum Ltd.
Telephone: +358 (0) 40 563 9186

Fax: +358 (0) 42 563 9186

Web: http://www.tidorum.fi/
http://www.bound-t.com/

Mail: info@tidorum.fi

Post: Tiirasaarentie 32
FI-00200 HELSINKI
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi/) with
support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
Ip-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted
Dennison for the OpenToken package. Call-graphs and flow-graphs from Bound-T are displayed
with the dot tool from AT&T Bell Laboratories. Some versions of Bound-T emit XML data with
the XML _EZ Out package written by Marc Criley at McKae Technologies.

http://www.ssf.fi/
http://www.bound-t.com/
http://www.tidorum.fi/
http://www.bound-t.com/

Contents

1 INTRODUCTION 1
1.1 PUIMPOSE AN SCOPE...ciiitiiiiiiiieeeeee ettt e e e ettt eeeaaa e eeas 1
N O YT YT PN 1
R T = (T =T o - RPN 2
1.4 Abbreviations and aCrONYMIS.......cccuuiiiiiiiiii e e e e e e e e e e e et e e e e et e e eeees 3
1.5 TypographiC CONVENTIONS.ottt e e e e s 3
2 USING BOUND-T FOR AVR 4
P20 R © VY o = 4
A VT o] o To) A0 VL= oV =Y AR 4
P2 T [o1 o 1WA 0] 0 0 =1 3 5
2.4 Command arguments and OPLIONS.........uuuiiiiiiieeiiiie i e e e e e e e eaens 5
SIS 10 o] o To T (=T o I ANV A 0 [V o = 9
2.6 Choice of procedure calling ProtoCoL...........cooiiiiiiiiiiiiiiiiiiii e 10
3 WRITING ASSERTIONS 11
i1l OVBIVIBW..eeiiiiiiiiiit ettt ettt et e e e e eaae 11
3.2 Naming items DY @ddreSS.cccuuuiii i e 11
3.3 INSIIUCHION TOIES....cciiiiiiiie ettt e e eaeees 13
G o (0] o 1T £ (=T TPt 14
4 THE AVR AND TIMING ANALYSIS 15
Nt I 1= N PP EEPRRURRPR 15
4.2 Static execution-time analysis 0N the AVR...........oooiiiiiiiiiiiiiii e 17
) SUPPORTED AVR FEATURES 19
SR R © YT o TP 19
5.2 Reminder of generic IMitatioNS..........ccooiiieiiiiiiiiiie e e 19
5.3 Main @SSUMPLIONS. ...ttt e e e e e e e e e e e e e e s e e s s s s e s s r e e e e e e nabe e e aeeene 20
5.4 Instructions and COMPULALIONS.........c.ooiiiiiiiiiiiie e e e e e e e 20
5.5 Computations with 16-bit NUMDEIS............oooiiiiiiiiii e 21
5.6 Control-transfer iINStrUCTIONS.iiiiiiie i 24
5.7 Stack-usSage @an@lySiS........cccoiiiiiiiiiiiiiiiie ettt e e e 24
6 SUPPORTED COMPILERS 26
200 R [11 o To [Tox 1o o T 26
6.2 Procedure calls iNthe AVR........ooiiiiiiii e e e 26
6.3 The IAR C/ECH+ COMPIIEI....coiiiiiiiiiiii ettt e e e e 28
6.4 The ImageCraft ICCV7 COMPIIET........uuuuiiiiiiiiiiiiiiiiie e 30
6.5 The GNU GCC COMPIIETo e e e e e eeaees 31
7 WARNINGS AND ERRORS FOR AVR 34
% R VAV = 1 o1 o 0 =2 ST Vo = 34
7.2 EITOI INESSAGES ..ttt it e eee et ettt e e e e e e e ettt ee et bbb st e e e e e e e e eeee e s bbb b e e e e e eeeennaaeee 37

Index of tables

Table 1: Supported AVR features, tO0lS, fOTMALS......ccceriiuiieireiiieierieiiieeeeersireeeeesrreeeeessereeessssssrneessssnennnns 4
Table 2: Command OPtionS fOT AVR.......c.uuviiiiiriiieeieiiiteeeeeeiiteeesesitreeesssstsreesssssssseessssssssssssssessssssssssssssnes 6
Table 3: Supported Target Program File FOIMALS........ccceeevveeierriiireeeiniiieeeesesireeessssireseeeeesesesesesesssssessesne 8
Table 4: Options for Specific File FOTMALS......cc.teiriiiiiiiieiiieeeitee ettt ettt ettt e et e e e e e beee e 8
Table 5: Supported Calling PrOtOCOIS......ccvcuuiitiiieiiiieee ittt e eritteeeesireeeesestreeessssasseeeesssssesesnsesssssnnnsnsssnnes 8
Table 6: AVR-SPECIfiC ~TrACE OPLIOTIS. ..uvrreeererrreeeerriireeeeeisrreeeesssreeeseessseeesssssssseesssssssseessssssseeessssssssssssssnes 9
Table 7: SUPPOTLEd AVR EVICES......uuviriireiiieietieiiiteeeeriiteeeeesiteeesssssstaeessssstaeessssseaessssssaeesssssseaeessssssnenes 10
Table 8: Naming Variables DY AQAIess......cccuuiieireiiiiiieiiiiiieeeersiiteeeessiteeessesssreeesssssseesssssssssssssssssssssssmenes 12
Table 9: Meaning of Pointer Variable...........coicuiiiiiiiiiieeeeiiee ettt et eeree e e e e s e 13
Table 10: ASSEItable PrOPEITIES. ..iecuuvietrieirrieeeeriieteeresieeesseeereeessssreaeesssssreeesssssseeesssssssesssssesssesesesesesenns 14
Table 11: Data MeMOTY IMAD....ccciiieitteeeeiiitteeeeeitteeeeetteeeeseieteeessaubeteeessustteesssassbaeesssasseteesssausssnsssnsnsnnes 17
Table 12: Generic Limitations of BOUNA-T.........ccoiutiiiiiirniiienieeeiiee et erteeeeete et e sbeeessareeesreeessennnee 19
Table 13: Chainable INStrUCtiON PairS......c..uteiiiriuiiieeieiitiee ettt e eeitte e e et e e e sttt e e s e beteeeesaabeeeesssnreeeees 22
Table 14: IAR Options for Switch-Case STAtEIMENES......cccuvveeerrreeriireereiieerieeereeeeesreeesareeessreeesreeesssannneee 30
Table 15: GCC ReGIStEr USAGE..cciiiiiiicccuieiiiiiteieeeeeeeeesieiitrtrteeeeeeeeeeaaaesararareeeesaesesssssassssssaneeeeseseseesnesssnnnnns 32
Table 16: WarTliNg IMESSAZES. ...ccccueererererieeerentteerieeeeinteesaireeeereeesreresemeeeesareeesasaeesamreesenseeesseneesesssesannnnes 34
TaDIE 17: EITOT MESSAZES. .. uuvieieuuieeeiiteeeiteeette e e et e e sttt e eeeteeeattee e uteesaabaeeaasteeaseeesnasteeansteesasaeeeaseeessaeennnee 37

Document change log

Issue Section Changes

1 All First issue.

Vi

1.1

1.2

INTRODUCTION

Purpose and scope

Bound-T is a tool for computing bounds on the worst-case execution time and stack usage of
real-time programs by means of a static analysis of the machine code of the program. There are
different versions of Bound-T for different target processors. This Application Note supple-
ments the general Bound-T manuals (references [1] and [2]) by giving additional information
and advice on using Bound-T for one particular target processor, the processor architecture
known as the Atmel AVR [4]. This information includes:

« the kinds of input files (executable programs) that Bound-T for AVR can read,
+ the AVR devices (chips, models) that Bound-T for AVR supports,

+ the cross-compilers that Bound-T for AVR supports,

+ the AVR-specific command-line options for Bound-T,

+ the AVR-specific details of the Bound-T assertion language, and

+ the AVR-specific warning and error messages that Bound-T can emit.

Furthermore, the Application Note details how the analysis in Bound-T handles the features of
the AVR architecture, with emphasis on features for which the analysis is approximate or even
absent.

There may be other Bound-T Application Notes on issues that are not limited to the AVR, but
nevertheless can be relevant when using Bound-T on AVR programs. For example, there may
be Application Notes dealing with the target-independent properties of certain cross-compilers,
or the target-independent aspects of how Bound-T reads and interprets certain executable-
program formats. Check the Bound-T web-site http://www.bound-t.com/ for such information.

Overview

The reader is assumed to be familiar with the general principles and usage of Bound-T, as
described in the Bound-T Reference Manual [1] and the Bound-T User Guide [2]. The User
Guide contains a glossary of terms, many of which will be used in this Application Note.

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of a
subprogram: Starting from the executable, binary form of the program, Bound-T decodes the
machine instructions, constructs the control-flow graph, identifies loops, and (partially)
interprets the arithmetic operations to find the "loop-counter" variables that control the loops,
such as nin "for (n = 1; n < 20; n++) { ... }".

By comparing the initial value, step and limit value of the loop-counter variables, Bound-T
computes an upper bound on the number of times each loop is repeated. Combining the loop-
repetition bounds with the execution times of the subprogram's instructions gives an upper
bound on the worst-case execution time of the whole subprogram. If the subprogram calls
other subprograms, Bound-T constructs the call-graph and bounds the worst-case execution
time of the called subprograms in the same way.

When the program under analysis contains complex loops that Bound-T cannot analyse auto-
matically the user must set the repetition bounds for these loops. This is done by writing
assertions in the Bound-T assertion language. Assertions can also guide and help the analysis in
other ways.

Bound-T for AVR Introduction 1

http://www.bound-t.com/

1.3

This Application Note explains how Bound-T has been adapted to the architecture of the AVR
processor and how to use Bound-T to analyse programs for this processor. To make full use of
this information, the reader should be familiar with the register set and instruction set of this
processor, as presented in reference [4].

The remainder of this Application Note is divided into a user guide part and reference part.The
user guide part consists of chapters 2 through 3 and is structured as follows:

Chapter 2 explains those Bound-T command arguments and options that are wholly specific
to the AVR or that have a specific interpretation for this processor.

Chapter 3 explains how to write assertions to guide the analysis of AVR program. This
extends the Bound-T Assertion Language manual [3] with AVR-specific details.

The remainder of the Application Note forms the reference part as follows:

Chapter 4 describes the main features of the AVR architecture and how they relate to the
functions of Bound-T.

Chapter 5 defines in detail the set of AVR instructions and registers that is supported by
Bound-T.

Chapter 6 presents the supported cross-compilers and explains the procedure calling
standards (conventions, protocols) that Bound-T supports.

Chapter 7 lists all the AVR-specific warning and error messages that Bound-T may emit,
explains what the messages mean and what the underluying problem may be, and suggests
some ways to correct these problems.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bound-T Reference Manual.
Tidorum Ltd., Doc.ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual. pdf

Bound-T User Guide.
Tidorum Ltd., Doc.ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf

Bound-T Assertion Language.
Tidorum Ltd., Doc.ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf

8-bit AVR Instruction Set.
Atmel Corporation 2002, ref. 0856D AVR 08/02.

AVR-Libc.
http://www.nongnu.org/avr-libc/user-manual/.

ICC V7 for AVR - C Cross Compiler for the Atmel AVR.
ImageCraft Creations Inc., December 3, 2006.

AVR COFF (Common Object File Format) Specification. Preliminary release.
Jo Inge Lamo, version 1.0, January 5, 1998.

AVR TAR C/EC++ Compiler Reference Guide for Atmel Corporation's AVR
Microcontroller.
IAR Systems, February 2005 (fourth edition), Part number CAVR-4.

Analysing Switch-Case Tables by Partial Evaluation.

N. Holsti, Tidorum Ltd. Presented at the 7th International Workshop on Worst-Case
Execution Time Analysis (WCET'2007), Pisa, Italy, July 3, 2007.
http://www.tidorum.fi/bound-t/reports/wcet2007/abstract.html.

Introduction Bound-T for AVR

http://www.tidorum.fi/bound-t/reports/wcet2007/abstract.html
http://www.tidorum.fi/bound-t/reports/wcet2007/abstract.html
http://www.nongnu.org/avr-libc/user-manual/
http://www.bound-t.com/manuals/assertion-lang.pdf
http://www.bound-t.com/manuals/user-guide.pdf
http://www.bound-t.com/manuals/ref-manual.pdf

1.4

1.5

Abbreviations and acronyms

See also reference [2] for terms specific to Bound-T and reference [4] for the mnemonic

operation codes and register names of the AVR.

COFF
ELF
IAR
ICCV7
RISC
SREG
TBA
TBC
TBD
UBROF
\%
WCET
X

Y

Z

Common Object File Format [7]

Executable and Linking Format

The C/EC++ compiler from IAR Systems [8]

The C cross-compiler from ImageCraft [6]
Reduced Instruction Set Computer

Status Register.

To Be Added

To Be Confirmed

To Be Determined

Universal Binary Relocatable Object Format
Overflow flag (in the SREG)

Worst-Case Execution Time

The X register, formed by the register pair r27:126
The Y register, formed by the register pair r29:r28

1. The Z register, formed by the register pair r31:r30
2. The zero flag (in the SREG)

Typographic conventions

We use the following fonts and styles to show the role of pieces of the text:

register
instruction
-option
symbol
text

identifier

The name of an AVR register embedded in prose.
An AVR instruction.

A command-line option for Bound-T or other tools.
A mathematical symbol or variable.

Text quoted from a text / source file or command.

An identifier from a program.

Bound-T for AVR Introduction

2 USING BOUND-T FOR AVR

2.1

Overview

This chapter begins the “user guide” part of this Application Note. It starts by giving an
overview of the AVR features and tools that Bound-T currently supports and continues by
describing the input formats and listing and explaining all AVR-specific command-line options.

2.2

Support overview

Table 1 below shows a summary of the AVR features and tools that Bound-T supports at
present. Note that support for a particular cross-compilers, such as the IAR compiler, means
only that Bound-T/AVR has some knowledge of this compiler; it does not mean that Bound-T/
AVR can analyse all programs compiled by this compiler, and likewise for procedure calling

standards.

Table 1: Supported AVR features, tools, formats

Features

Supported

Notes

Architecture and
instruction set

Full AVR [4].

Some limitations for code memories over
64 KiB.

Devices

Most AVR devices. If in doubt, ask
Tidorum to verify for your device.

Some limitations for code memories over
64 KiB.

Cross-compilers

IAR

Well supported, including some analysis of
C++ virtual calls.

ImageCraft ICCV7
GNU gcc Poorly supported at present, because of
gec's complex use of the hardware stack
(sP stack) when 16 bits wide. An 8-bit
SP is better supported.
Procedure calling ImageCraft ICCV7 With or without -r20_23.
standards
IAR Twovariants supported.
GNU gcc Uses no "software" stack, only SP.
Problematic for 16-bit SP.
Stacks The normal SP stack and optionally a The SP stack is poorly supported for gcc
software-defined stack using the X, Y, with a 16-bit SP.
or Z register as stack pointer.
Executable file formats ~ ELF with DWARF2 or DWARF3

UBROF 10 from IAR

COFF

Execution-time unit

Processor clock cycle [4]

Stack-space unit

Octet (8-bit byte)

4 Using Bound-T for AVR

Bound-T for AVR

2.3

2.4

Input formats

Executable target-program files

The target program executable file can be supplied in three formats: standard ELF, standard
COFF, or the proprietary UBROF format defined by IAR Systems. Bound-T can usually detect
the actual file format automatically, but it can also be chosen with command-line options as
explained later in this chapter.

The quantity and detail of the symbolic (debugging) information differs between the three
formats. In particular, only the UBROF format includes information about virtual function
calls, thus Bound-T can analyse such calls (find the set of possible callees) only for UBROF
programs. If an ELF or COFF program contains such calls you must use assertions to tell
Bound-T about the possible callees for each such call.

Patch files not supported

Bound-T provides the general option -patch filename that names a file that contains patches to
be applied to the loaded target-program memory image before analysis starts. The format of
the patch file is specific to the target processor. The AVR version of Bound-T does not currently
support patching and so no patch-file format is defined.

Command arguments and options

Generic options and arguments

The generic Bound-T command format, options and arguments are explained in the Bound-T
Reference Manual [1] and apply without modification to the AVR version of Bound-T. The
command line usually has the form

boundt_avr options target-program-file root-subprogram-names

For example, to analyse the execution time on the AVR device ATmega64 of the main sub-
program in the target program stored as the ELF file prog.elf under the option -trace calls,
the command line is

boundt_avr -device atmega64 -trace calls prog.elf main

Root subprograms can be named by the link identifier, if present in the program symbol-table,
or by the entry address in hexadecimal form. Thus, if the entry address of the main
subprogram is 12A0 (hex), the above command can also be given as

boundt_avr -device atmega64 -trace calls prog.elf 12A0

All the generic Bound-T options apply. There are additional AVR-specific options as explained
below. The generic option -help makes Bound-T list all its options, including the target-specific
options.

AVR-specific options

The additional AVR-specific options are explained in Table 2 below. Note that a target-specific
option must be written as one string with no embedded blanks, so the option-name and its
numeric or symbolic parameter, if any, are contiguous and separated only by the equal sign
(=) but not by white space. For example, the form "-format=elf' is correct, "-format = elf' is
not. In addition to the options in Table 2 there are some options specific to certain executable
file formats; these are listed separately in Table 4.

Bound-T for AVR Using Bound-T for AVR 5

The -device option is a general Bound-T option, but its values — the device names — are target-
specific. Section 2.5 lists the presently supported AVR devices and discusses any restrictions or
device-specific options.

Table 2: Command Options for AVR

Option Meaning and default value
-device=<name> Function Choose the AVR target device (chip, model) by giving the
or just name of the device. The presently supported AVR devices are
-<name>

listed in Table 7 below. The device name is case-insensitive.
The equal sign is optional and the option can be written
-device <name>.

Default There is no default; a device must be selected.

-endian=big Function For modelling 16-bit computations, assume that 16-bit
numbers are stored in memory in big-endian order: more
significant octet first (at address A, say), less significant octet
second (at address A+1).

Default The default is -endian=little.

-endian=little Function For modelling 16-bit computations, assume that 16-bit
numbers are stored in memory in little-endian order: less
significant octet first (at address A, say), more significant
octet second (at address A+1).

Default This is the default.

-format=<form> Function Specify the format of the target program file. The presently
or just supported formats are listed in Table 3 below. The format
-<form> name form is case-insensitive.

Default Automatic detection of the file format.
-logues=call Function For an UBROF target program (compiled by the IAR

compiler), specify that the prologue and epilogue “helper”
routines be modelled as normal subprograms that are called
from the subprograms that use them. See section 6.3.

Default The default is -logues=integrate, which see.

-logues=integrate Function = For an UBROF target program (compiled by the IAR
compiler), specify that the prologue and epilogue “helper”
routines be modelled as integrated parts of the subprograms
that use them, as if the option “integrate” were asserted for
each prologue and epilogue routine. See section 6.3 and
-logues=call.

Default This the default.

-mul Function = The mul and muls instructions are modelled exactly as
multiplications. Other multiplication instructions are
modelled as giving an unknown result.

Default The default is -no_mul.

-no_mul Function All multiplication instructions are modelled as giving
unknown results.

Default This is the default.
-no_switch_eval Function Disables partial evaluation of switch handler routines.

Default The default is -switch_eval, which see.

Using Bound-T for AVR Bound-T for AVR

Option Meaning and default value

-protocol=<name> Function Choose the calling protocol to be assumed for stack handling
or just and parameter passing between subprograms, by giving the
-<name>

name of the protocol. The presently supported calling
protocols are listed in Table 5 below. The protocol name is
case-insensitive.

Default The target program file (or its format) may imply a default
protocol. Otherwise there is no default and the protocol must
be chosen with this option.

-switch_eval Function Enables partial evaluation of switch handler routines using
the method described in reference [9].

Default This is the default.

-switch_offset=any Function Asserts that any offset added to the switch-table pointer
within a switch handler may have any value, including a
negative value.

Default The default is -switch_offset=pos, which see.

-switch_offset=pos Function Asserts that all offsets added to the switch-table pointer
within a switch handler are non-negative.

Default This is the default.

-switch_steps=<N> Function Sets the maximum number N of flow-graph steps
(instructions) for any subprogram that invokes a switch
handler, when the switch handler is partially evaluated
(-switch_eval). Analysis of the switch handler is aborted if the
flow-graph reaches this size. This may happen if the partial
evaluation of the switch handler is not precise enough to
detect the end of the switch table.

Default The default is -switch_steps=2000.

-swstack=<D><P> Function Defines the auxiliary, software stack mechanism by means of
the two one-character symbols D and P which define
respectively the direction of growth and the stack pointer
register.

If D is '+' the stack grows upwards to higher addresses.
If D is '-' the stack grows downwards to lower addresses.

The letter P defines the stack pointer to be one of the three
AVR pointer registers X, Y, or Z by the corresponding letter
X', 'Y' or 'Z' or the lower-case equivalents.

For example, —swstack=—Y defines a downwards-growing
stack with register Y as the stack pointer. This is the most
common form of software stack on the AVR.

Default There is no general default, but the chosen or implied calling
protocol may imply a default software stack mechanism.
See Table 5.

Program loading options

The two following tables describe the options that guide the process of reading the memory
image and symbol tables of the target program to be analysed. Table 3 shows the possible
values of the -format option and Table 4 describes some format-specific options.

Bound-T for AVR Using Bound-T for AVR 7

Table 3: Supported Target Program File Formats

The <form> for Format Typical flla:a-
-format=<form> name suffix
COFF Common Object File Format [7] from the ImageCraft ICCV7
compiler.
No implied protocol. Use ICCV7 or ICCV7a with the -protocol .
. various
option.
Support for COFF symbols (debugging information) is
rudimentary at present.
ELF Executable and Linking Format from the GNU GCC compiler.
. . elf
Implies the GCC calling protocol.
UBROF Universal Binary Relocatable Object Format from the IAR 490
compiler. Implies the ICCA90 calling protocol.)
Table 4: Options for Specific File Formats
Format Option Meaning and default value

COFF (none)

ELF -elf_sym Function ~Makes Bound-T use the ELF symbol-table in
addition to the STABS symbol table.

Default The ELF symbol-table is used only if the executable
file has no STABS symbol-table.

UBROF -draw_classes Function Draw the class hierarchy diagram, from the C++
class information in the UBROF file.

Default The diagram is not drawn.

-draw_class_functions Function As -draw_classes but also shows names of function
members in each class.

Default The diagram shows only the class name.

-draw_class_members Function As -draw_classes but also shows names of data
members.

Default The diagram shows only the class name.

Calling protocol options

Table 5 below lists the calling protocols that can be chosen with the option -profocol=<names.

Table 5: Supported Calling Protocols

The <name>

for -protocol=<name> Calling protocol

GCC The GNU C compiler calling protocol. See section 6.5.
This protocol uses only the normal (SP) stack, no software stack. This
protocol is well supported only for an 8-bit SP.

Using Bound-T for AVR Bound-T for AVR

2.5

The <name>

for -protocol=<name> Calling protocol

IAR Either of the two calling protocols used in the IAR C/C++ compiler.

See section 6.3.
Implied by default for UBROF executable files.
Implies a software stack as in —stack=-Y.

iccvz The ImageCraft ICCV7 compiler calling protocol when the compiler
option -r20_23 is not used. See section 6.4.
Implies a software stack as in —stack=-Y.

ICCV7a The ImageCraft ICCV7 compiler calling protocol when the compiler
option -r20_23 is used. See section 6.4.
Implies a software stack as in —stack=-Y.

AVR-specific -trace options

Table 6 below describes the AVR-specific items for the generic option -trace, to ask for certain
additional outputs from Bound-T.

Table 6: AVR-Specific -trace Options

-trace item Traced information

bref Displays the arithmetic effect of each instruction as it is decoded and modeled
(as for the generic option -trace effect) but puts each assignment on its own
line, for a more readable listing.

classes The class types (in the C++ sense) defined in the program. This information is
available only for UBROF programs.

class_members Class types and class members (in the C++ sense) defined in the program. This
information is available only for UBROF programs.

finish Finishing the arithmetic model to include composite cells — register pairs and
pointers.

load Program elements (segments, sections, symbols, ...) as they are loaded from
the executable file.

logues Routines classified as prologue or epilogue routines, as they are detected.

switches Detection and analysis of switch handlers.

virtuals Virtual function calls and possible callees. This information is available only

for UBROF programs.

Supported AVR devices

Atmel produces many different processor chips — devices — with the AVR architecture. All these
devices support most of the AVR instruction set, but have different sets of on-chip I/0
peripherals and different amounts memory. Depending on the memory size, the code address
(PC) may need two or three octets and the data address (AVR “pointer” registers) may need
one, two, or three octets. The code-address size determines the number of cycles and the stack
space needed for calls and returns (pushing and popping the PC). The data-address size
determines how many octet registers combine to a “pointer” register and take part in auto-

Bound-T for AVR Using Bound-T for AVR 9

2.6

10

increment or decrement. Both factors influence the operation of Bound-T, and therefore you

must use the command-line option -device name to tell Bound-T which AVR device is to be
used.

Table 7 lists the names of the AVR devices that Bound-T supports at the time of writing (use
the -help option to get an up-to-date list). The names are case-insensitive. Future versions of
Bound-T/AVR will have alternative options to define the relevant properties, such as PC size,
for AVR devices that are not known to Bound-T by name.

Table 7: Supported AVR devices

The <name> The <name>
for -device=<name> for -device=<name>
AT90CAN128 ATmega32
AT90S51200 ATmega32L
AT90S8515 ATmegab4
ATmegai03 ATmegab4L
ATmega103L ATmegab44
ATmegal28 ATtiny11
ATmegai128L ATtiny12
ATmegal63 ATtiny13
ATmegai63L

Choice of procedure calling protocol

The definition-analysis and (especially) arithmetic analysis of a subprogram depend on the
calling protocol of the subprogram.

Bound-T chooses the calling protocol as follows:

- Command-line options -protocol=<name> or just -<name> (see Table 5).

+ The calling protocol implied by the executable file (see Table 3).

Bound-T emits an error message if the executable file implies no calling protocol and no
protocol is chosen with command-line options.

Bound-T emits a warning message if the executable file implies a calling protocol but a
command-line option chooses a different protocol. The command-line option overrides the
implied protocol from the executable file.

Using Bound-T for AVR Bound-T for AVR

3.1

3.2

WRITING ASSERTIONS

Overview

If you use Bound-T to analyse non-trivial programs you nearly always have to write assertions
to control and guide the analysis. The most common role of assertions is to set bounds on some
aspects of the behaviour of the target program, for example bounds on loop iterations, that
Bound-T cannot deduce automatically. Assertions must identify the relevant parts of the target
program, for example subprograms and variables. The assertion language has a generic high-
level syntax [3] in which some elements with target-specific syntax appear as the contents of
quoted strings:

+ subprogram names,

» code addresses and address offsets,

» variable names,

+ data addresses and register names,

 instruction roles, and

+ names of target-specific properties of program parts.

In practice the names (identifiers) of subprograms and variables are either identical to the
names used in the source code, or some “mangled” form of the source-code identifiers where
the mangling depends on the cross-compiler and not on Bound-T. However, Bound-T defines a
target-specific way to write the addresses of code and data in assertions. Register names are
considered a kind of “data address” and are target-specific.

This chapter continues the user-guide part of this Application Note by defining the AVR-
specific aspects of the assertion language.

Naming items by address

Subprograms and code addresses

A subprogram can be named by giving its entry address in hexadecimal and in octet units. For
example, the following assertion applies to the subprogram that is entered at the octet address
ABE2 hex, corresponding to the instruction word address 5371 hex:

subprogram “a6e2”
loop repeats 10 times; end loop;
end “a6el”;

The octet address must be an even number since it is the address of an instruction word. An
odd address will be rejected with an error message.

Other code addresses (eg. for loop identification) are also given in octet units as hexadecimal
numbers.
Code-address offsets

Some forms of assertions define code addresses by giving a code offset relative to a base
address. For Bound-T/AVR a code offset is written as a hexadecimal number possibly preceded
by a sign, ' or '+, to indicate a negative or positive offset. If there is no sign the offset is
considered positive.

Bound-T for AVR Writing Assertions 11

12

Assume, for example, that the subprogram Rerun has the entry address 14AC hexadecimal and
the subprogram Abandon has the entry address 157B hexadecimal. The subprogram with the
entry address 14D2 hexadecimal can then be identified in any of the following ways, among
many others:

+ Using the absolute address:

subprogram address "14D2"

- Using a positive hexadecimal offset relative to the entry point of Rerun:

subprogram "Rerun" offset "26"

- Using a negative hexadecimal offset relative to the entry point of Abandon:

subprogram "Abandon" offset "-A9"
Note that the sign, if used, is placed within the string quotes, not before the string.

Variables: registers and memory locations

Assertions can refer to program variables using machine-level names or addresses. For
example, the assertion

variable address “p6” <= 102;

states that the 16-bit variable represented by the AVR register pair r7:r6 has a value less or
equal to 102.

The machine-level name of a variable consists of a prefix of one or more letters often followed
by a selector. The selector can be a number or a mnemonic. The prefix defines the type of
register or memory and the selector identifies the specific register or memory location. The
table below shows the available prefixes and the corresponding selectors whether numeric or
mnemonic and their meaning. The name is case-insensitive; for example the forms “r5” and
“R5” are equivalent. The “Base” column shows the numeric base for numeric selectors.

Table 8: Naming Variables by Address

Prefix Selector Base Meaning Examples
r 0.31 10 An 8-bit general register r0, r31
P An even number 10 A 16-bit register pair formed of an even- p0, p30
0..30 numbered 8-bit register (selector, low

octet) and the next 8-bit register (selector
+ 1, high octet).

p W, XY, 2 - pW is the same as p24. pX
pX is the same as p26.
pY is the same as p28.
pZ is the same as p30.

a X, Y,Z - The pointer variables X, Y and Zz as used aY
in the AVR indirect-load and indirect-
store instructions. See Table 9.

RAMP X,Y,2,D - The AVR pointer-extension registers for =~ RAMPZ
the X, Y and z pointers and for direct load
and store (RAMPD).

d 0..2*%-1 16 A data memory octet. df8c

Writing Assertions Bound-T for AVR

3.3

dw 0.2%-1 16 A data memory word consisting of the dw34a0
octet at the given address (selector) and
the following octet.

c 0.2%-1 16 A code memory octet. dfgc

cw 0..2*%-1 16 A code memory word consisting of the cwif062
octet at the given address (selector) and
the following octet.

io 0..3F 16 An octet I/0 register at the given I/0 io0 = d20
address (selector). Same as d with the io3f = d5f
selector increased by 32 = 20 hex.

The meaning of the pointer variables “aX”, “aY” and “aZ” for data-memory access depends on
the AVR device as shown in the table below. The significant factor is the memory size because
it defines how many 8-bit registers are needed to form a memory address. In other words, in
an AVR device with no more than 28 = 256 octets of data memory the name "aX" is equivalent
to the name "r26" and both identify the register r26. In devices with more than 28 but no more
than 216 octets of data memory "aX" is equivalent to "p26", the register pair r26:r26, while in
devices with more than 216 octets "aX" means the register triple RAMPX:r27:r26.

Table 9: Meaning of Pointer Variable

Variable 8-bit address 16-bit address 24-bit address
aX r26 r27:126 = p26 RAMPX:r27:r26
aYy r28 r29:r28 = p28 RAMPY:r29:r28
az r3o r31:r30 = p30 RAMPZ:r31:r30

For program-memory access the registers used in the address are defined by the instruction,
not (directly) by the size of the program memory. The Ipm (load program memory) instruction
uses the 16-bit address formed by the register pair r31:r30, identified by the name "pZ", to read
data from the program memory. This instruction can access the first 64 KiB of program
memory. In contrast, the elpm (extended load program memory) uses the 24-bit address
formed by the triple RAMPZ:r31:r30 to read data from the program memory, up to 16 MiB in
size. This triple is identified by the name "aZ". Naturally, AVR devices with no more than
64 KiB (32 kilo-words) of program memory tend not to implement the elpm instruction.

Instruction roles

The generic assertion language [3] contains syntax for asserting the "role" that a given
instruction (identified by its address or offset) performs in the computation, for example
whether a branch instruction performs a branch or a call. The roles and their names are target-
specific. The AVR version of Bound-T defines no assertable roles; it chooses the role of each
instruction based on its own analysis of the instruction and its context.

Bound-T for AVR Writing Assertions 13

3.4 Properties

The assertable properties for the AVR are listed and explained in the following table.

Table 10: Assertable Properties

Property name Meaning, values and default value

virtual Function Controls the analysis of virtual function calls from a particular
subprogram. Relevant only in subprogram scope (because
applied during flow tracing).

Values 0 Model virtual function calls as a set of alternative static calls,
as with the option -virtual static.

1 Model virtual function calls as dynamic (boundable) calls, as
with the option -virtual dynamic.

other Undefined and reported as errors.

Default According to the setting of the command-line option -virtual.

14 Writing Assertions Bound-T for AVR

4.1

THE AVR AND TIMING ANALYSIS

The AVR

An 8-bit RISC microcontroller

The AVR [4] is an 8-bit microcontroller core. It has a "Harvard" architecture (separate program
and data memories) and a two-stage pipeline with separate fetch and execute cycles.
Computational instructions use register and immediate operands and destinations; there are
separate load and store instructions, as in RISC processors.

The size of the program and data addresses depends on the particular AVR device, according
to the size of the program and data memories. A program address is 16 or 22 bits. A data
address is 8, 16 or 24 bits.

Integer addition, subtraction and multiplication are supported in hardware but division is not.
Integer operands are 8 or 16 bits long. The core AVR does not support hardware floating point
operations.

Data memory is addressed by octet. Load and store instructions operate on 8-bit quantities. To
load or store multi-octet values as many load or store instructions must be used. This means
that there is no hardware-defined endianness in memory. The software (compiler) decides if
multi-octet values are stored in little-endian or big-endian form. (However, the I/O area may
contain some 16-bit quantities with a hardware-defined endianness, see below.)

Data memory cannot be bit-addressed (except for the I/0 space, see below) but registers can
be. Data octets must be brought into registers for bit operations.

Program memory is addressed by 16-bit word when fetching instructions. The program counter
is a word address and thus increments by one for 16-bit instructions. However, data
(constants) can be fetched from the program memory using octet addressing and one of the
pointer registers (Z) about which more below.

Most instructions are 16 bits long. Some instructions have a second word and are thus 32 bits
long.

Registers

There are 32 general 8-bit registers, r0 through r31, but the instruction set is not entirely
symmetric and some registers have special roles. Some instructions operate on register pairs
where an even-numbered register holds the low octet of a 16-bit quantity and the next register
holds the high octet. For example, the symbol r31:r30 denotes the register pair formed of the
registers r30 (low octet) and r31 (high octet). The eight highest-numbered registers form four
pairs that have special roles and are called W =r25:r24, X =1r27:r26, Y = r29:r28,
Z =r31:r30. The X, Y and Z register-pairs can be used as data address registers (index
registers) with optional auto-increment or auto-decrement. The Z register can be used as a
code address register for indirect jumps and calls and to load constant data from the program
memory with octet addressing (the Ipm and elpm instructions).

The 32 general registers are also mapped in the start of the data address space at addresses 0
through 31. This means that registers can also be accessed indirectly.

In addition to the general registers, there is a Program Counter (PC) register, a Stack Pointer
(SP) register and a Status Register (SREG) that contains the condition flags and interrupt
masks.

The Program Counter PC points to the next instruction in the program memory. Depending on
the AVR model (size of code memory) the PC is either 16 bits or 22 bits wide. This influences
the timing of some instructions and the stack space required for return addresses.

Bound-T for AVR AVR Timing Analysis 15

16

The Stack Pointer SP is used in call and return instructions to push and pop the return
address. There are also push and pop instructions for storing data in the stack. The stack grows
downwards; a push post-decrements SP. In some small AVR chips the call/return stack is not
located in the general RAM but in a small, special memory with space for only a handful of
return addresses. In such chips the call/return stack pointer is invisible to the program and
there is no SP register and no push/pop instructions for data storage.

In addition to the processor stack many compilers for the AVR define and use a software stack.
The compilers use the processor stack for return addresses and the software stack for
parameter data and local variable data. Space for the software stack is allocated in the data
memory and the software stack pointer is usually the Y register pair.

Address extension registers

AVR devices with more than 64 kilo-octets of data memory have dedicated registers that
extend the X, Y and Z register-pairs with further high-order address bits. The RAMPX register
extends X, the RAMPY register extends Y and the RAMPZ register extends Z.

For indexed jumps and calls the Z register-pair is extended by a different extension register
called EIND.

When an instruction uses an immediate 16-bit address to access data memory, it can be
extended to a 24-bit address by an extension register called RAMPD.

Condition flags

The status register SREG contains the conventional condition flags (Z = zero, N = negative,
C = carry, V = overflow) and a general flag (T). The T flag can be loaded and stored from or
to a specific bit in a specific general register. There is also a “signed comparison” flag S, which
is defined to be the exclusive-or of N and V, and a half-carry flag H for use in Binary Coded
Decimal arithmetic. We will ignore the S flag because it can be computed from N and V. We
will ignore the H flag because it is unlikely to be relevant for our purposes (Bound-T does not
model the H flag at all).

I/0 registers

A part of the data address space is called the I/0 address space and is accessed with dedicated
in and out instructions or with dedicated bit-setting and bit-testing instructions. The I/O
address space contains the peripheral control and data registers (which, of course, depend on
the processor model). The I/0O address space also provides access to some general registers:
the SREG, the low and high octets of SP (SPL, SPH) and the address extension registers
RAMPX, RAMPY, RAMPZ, RAMPD and EIND. For 16-bit quantities like the SP the I/O area
uses little-endian order (SPL comes before SPH).

Since the I/0 adddress space is a part (range) of the data address space, I/0 registers can also
be accessed using normal data load and store instructions.

Some AVR devices have more 1/0 registers than can be addressed by in and out instructions,
so load and store instructions must be used for the remainder. This area is called the extended
1/0 space. The real data memory space (RAM space) starts after the extended I/0 space.

Data memory, endianness

The AVR data memory is addressed by octet. The general and I/O registers are embedded in
the data memory address space. All memory load and store operations work on octets. This
means that there is no hardware-defined endianness: when a multi-octet quantity such as a 16-
bit integer is stored in memory the order of the octets is defined by the software. The four
register pairs combine the registers r24 .. r31 in little-endian order, which suggests that

AVR Timing Analysis Bound-T for AVR

4.2

software should use little-endian order in general. Moreover, when the SP is 16 bits its two 8-
bit parts SPL and SPH are also mapped as I/0 registers in little-endian order. On the other
hand, the call instruction stores the return address on the stack in big-endian order.

Memory map

The following table shows an overview of the data memory map and how the general registers
and I/0 registers can be accessed with data memory addresses.

Table 11: Data Memory Map

Data address I/0 address

hex dec hex dec Content

00 0 ro

01 1 r
r2 —r25

1A 26 r26 = low octet of X

1B 27 r27 = high octet of X

1C 28 r28 = low octet of Y

1D 29 r29 = high octet of Y

1E 30 r30 = low octet of

1F 31 r31 = high octet of z

20 32 00 0 First I/O register. Meaning depends on the AVR device.

21 33 01 1 Second 1I/0 register, ditto.

5F 95 3F 63 Last I/0O-addressable I/0 register, ditto.

60 96 First location that is not I/O addressable. For some AVR
devices this is the first true memory octet (storage cell); for
others this is the first extended I/0 space address.

61 97 Second location, ditto.

FFFF | 65 535 Last memory location addressable with 16 bits, that is, without
using the extension registers (RAMP registers).

10000 | 65 536 Memory over 64 kilo-octets, if the AVR device has such.
Accesses must use the extension registers (RAMP registers).

Static execution-time analysis on the AVR

The AVR architecture is very regular and quite fitting for static WCET analysis by Bound-T.
Instruction timing usually depends only on the control-flow and is independent of the data
being processed.

When a branch occurs, the AVR reloads the instruction pipeline before continuing. This means
that there are no “delayed” branches, which simplies control-flow analysis.

Bound-T for AVR AVR Timing Analysis 17

The following architectural features can lead to approximate (over-estimated) execution times
for the concerned instructions:

+ Memory wait states that vary in number depending on the address, because some addresses
map to on-chip, internal memory and others slower off-chip, external memory.

+ Flash-memory access and buffering delays, when the AVR device uses some kind of
buffering, caching, or prefetching for the flash memory.

18 AVR Timing Analysis Bound-T for AVR

5.1

5.2

SUPPORTED AVR FEATURES

Overview

This section specifies which AVR instructions, registers and status flags are supported and
modelled by Bound-T. We will first describe the extent of support in general terms, with
exceptions listed later. Note that in addition to the specific limitations concerning the AVR,
Bound-T also has generic limitations as described in the Bound-T Reference Manual [1]. For
reference, these are briefly listed in section 5.2.

General support level

In general, when Bound-T is analysing a target program for the AVR, it can decode and
correctly time all instructions, with minor approximations except for coprocessor instructions.

Bound-T can construct the control-flow graphs and call-graphs for all instructions, assuming
that the program obeys one of the supported procedure calling standards listed in chapter 6.
Note that there are generic limitations on the analysis of jumps and calls that use a
dynamically computed target address or a dynamically computed return address.

When analysing loops to find the loop-counter variables, Bound-T is able to track all the
integer additions and subtractions for 8-bit and 16-bit integers, but not for wider integers, for
example not for 32-bit integers. Bound-T correctly detects when this 8/16-bit integer
computation is overridden by other computations, such as multiplications or wider integer
computations. Note that there are generic limitations on the analysis of pointers to variables
(aliasing).

In summary, for a program written in a compiled language such as Ada or C with a compiler
that uses one of the supported procedure calling standards, the Bound-T user should not meet
with any AVR-specific constraints for 8-bit and 16-bit integers but may be disappointed by the
lack of analysis of wider integers, for example 32-bit integers.

Reminder of generic limitations

To help the reader understand which limitations are specific to the AVR architecture, the
following compact list of the generic limitations of Bound-T is presented.

Table 12: Generic Limitations of Bound-T

Generic Limitation Remarks for AVR target

Understands only addition, subtraction and No implications specific to the AVR.
multiplication by constants, in loop-
counter computations.

Assumes that loop-counter computations No implications specific to the AVR.
never suffer overflow.

Can bound only counter-based loops. No implications specific to the AVR.
May not resolve aliasing in dynamic Analysis may be incorrect if the unresolved dynamic
memory addressing. reference writes to the general registers r0 .. r31 (decimal

addresses 0 .. 31) or to special registers such as SREG or
SP in the I/0 area (decimal addresses 32 .. 95).

May ascribe the wrong sign to an No implications specific to the AVR.
immediate (literal) constant operand.

Bound-T for AVR Supported AVR Features 19

5.3

5.4

20

Main assumptions

Bound-T for the AVR makes the following AVR-specific assumptions about the target program
under analysis:

+ The registers r0 .. r31, the status register SREG, the stack pointer register SP, and the
address-extension registers RAMPX, RAMPY, RAMPZ, RAMPD, and EIND are not changed
by indirect access (access via pointers).

+ The program memory is read-only. If the program reads data from the program memory,
using an Ipm or elpm instruction, and Bound-T can resolve the address that is read, and the
executable file under analysis statically defines a value for address, this value is returned by
the Ipm or elpm.

« The ret and reti instructions always perform a return from the current subprogram
(interrupt handler, for reti). The use of ret as a dynamic branch or call, to whatever address
is pushed on the stack before the ret, is not now supported.

+ The choice of cross-compiler and/or calling protocol may imply further assumptions.

Instructions and computations

Bound-T for the AVR models the main computational effect of most AVR instructions
accurately, within the generic limitations of Bound-T and within the current AVR-specific
limitation to 8-bit and 16-bit computations. This section describes the computational effects
that are modelled approximately or not at all. However, note that some generic analyses in
Bound-T may introduce generic approximations. For example, the loop-bounds analysis based
on Presburger Arithmetic assumes that loop-counter computations do not overflow.

Registers and memory

Most registers and memory locations in the AVR are modelled. The following are modelled in
limited ways:

+ The absolute value of the SP register is generally opaque; only the changes in SP are
modelled. The same holds when a pointer register is used as the stack pointer for a
compiler-specific software stack.

« All memory locations, except I/O registers, are currently assumed to have ordinary non-
volatile memory semantics, that is, reading the location returns the last-written value.

+ Only the well-known I/O registers SPL, SPH, RAMPX, RAMPY, RAMPZ, RAMPD, and
EIND are modelled as non-volatile storage, for which an in instruction returns the value
written by the last out instruction. For all other I/0 registers the result of in is opaque (an
unknown value) and out is assumed to have no effect.

+ Status register SREG flags V, H, | are not modelled. Their values are considered unknown.

Future versions of Bound-T will provide means to define which memory locations and 1/0
registers are “volatile” and which are not. Even when a memory location or register is
physically non-volatile, for the analysis of a single thread in a multi-thread system it may
appear to be volatile if its value is changed at unpredictable times by other threads running
concurrently.

Instructions with unknown result

The swap (swap nibbles) and ror (rotate right through carry) instruction are currently given
an unknown computational result in the affected register.

Supported AVR Features Bound-T for AVR

5.5

The instructions that change a single bit in an 8-bit octet are modelled as setting the whole
octet to an unknown value. These instructions are bld, cbi, sbi.

Under default options, all multiplication instructions are given an unknown computational
result. Under the option -mul, the instructions mul (multiply two unsigned numbers) and muls
(multiply two signed numbers) are modelled as such multiplications, but the mulsu (multiply
signed with unsigned) instruction, and all fractional multiplication instructions (fmul, fmuls,
fmulsu), are still given unknown computational results.

Since the program memory is assumed to be read-only, the spm (store program memory)
instruction is assumed to have no effect on any computation that is important for the analysis.
Thus is it modelled as a no-operation instruction (with a warning).

Instructions with unknown timing

The break and sleep instructions have a non-deterministic effect on the real execution time. If
they occur in code subject to timing analysis, Bound-T emits a warning.

The spm (store program memory) instruction writes to flash memory and has a variable
execution time. Bound-T assumes only one cycle for the execution time of this instruction, and
emits a warning for every spm.

Stack Pointer SP

The value of SP is tracked mainly relative to its value on entry to the subprogram under
analysis (the local stack height in the subprogram).

For AVR devices with a 16-bit SP register, if the program changes the value of SP by out
instructions that separately change the low and/or high octets SPL and SPH, Bound-T may not
be able to compute the actual change in SP and the resulting stack usage. This problem
currently happens for gcc and subprograms with large local variables.

Computations with 16-bit numbers

The problem

The main problem in modelling the arithmetic computations in AVR programs is the
management of 8-bit registers vs 16-bit register pairs. In this section we explain the problem
and (briefly) what Bound-T does about it and how.

Most AVR instructions operate on 8-bit operands (octets, bytes). The few instructions that
operate on 16-bit operands (register pairs) are adiw (add immediate word) and subiw
(subtract immediate word) in which the other operand is an immediate constant of limited
magnitude, and movw (move word) which is just a register-to-register copy. The auto-
increment and auto-decrement options in the indirect load and store instructions also operate
on 16-bit (or even 24-bit) address values in the (possibly extended) X, Y and Z registers, but
there it ends.

Therefore, most arithmetic on 16-bit or larger numbers in an AVR program must be
implemented by chains of 8-bit operations such as add followed by adc (add with carry). If we
did not detect and model such operation chains we would be unable to find loop-bounds
automatically for loops with counters larger than 8 bits.

The detection and modelling of operation chains in Bound-T/AVR is currently implemented in
AVR-specific ways. In the future, it will be implemented by generic, processor-independent
methods.

Bound-T for AVR Supported AVR Features 21

Register pairs for 16-bit values

In principle a 16-bit value could be held in any two 8-bit registers, for example with the less
significant octet (also called the low octet) in r2 and the more significant (high) octet in r5.
However, AVR compilers tend to follow the example set by the AVR pointer registers X, Y, Z
which are composed of register pairs with adjacent numbers, with the low octet in a register
with an even number and the high octet in the next (odd-numbered) register. For example, the
X pointer consists of the register pair r27:r26, using the notation (high octet):(low octet).

Following this example, AVR compilers seem to keep all 16-bit values in even:odd register
pairs, such as r1:r0. Bound-T detects and models 16-bit computations only under this
condition, that register operands are odd:even register pairs.

Memory octet pairs for 16-bit values

As for registers, 16-bit values could be stored in memory using any pair of octets, but we
assume that compilers will always use adjacent memory octets to store the low and high octets
of a 16-bit value, and will use the same endianness (octet order) for all 16-bit values.
However, different compilers may use different endianness, so the endianness that Bound-T
assumes can be set by the command-line option -endian.

Bound-T thus detects and models 16-bit accesses to memory and I/O register only when the
memory locations involved are adjacent and in the right endianness order.

Chaining 8-bit operations into 16-bit operations

Bound-T for the AVR detects and models some pairs (two-step chains) of 8-bit operations that
implement 16-bit computations. When the two instructions are consecutive, such as an add
immediately followed by an adc, the chain is detected and modelled on the fly as instructions
are decoded and entered in the flow-graph. Non-consecutive chainable instructions are
detected in a later phase based on data-flow analysis of the whole flow-graph.

The operations that can be chained in this way are loading values from memory, storing values
into memory, loading a literal value, moving values between registers, addition, subtraction
and comparison. Shifts and rotations are not currently chained. Table 13 below shows the
chainable instruction pairs, the conditions under which a given pair is chained, and the
chained (16-bit) effect. In general, two 8-bit operations are chained when the 8-bit destination
registers (which are also the first 8-bit operands in each operation) form an odd:even register
pair; this pair becomes the 16-bit destination register and the first 16-bit operand in the
chained operation. It is not required that the second 8-bit operands in the 8-bit operations
should form such a pair, but if they do then this pair becomes the second 16-bit operand in the
chained operation.

Table 13: Chainable Instruction Pairs

Instruction . . .
. Chained effect Chaining condition
first second
add adc 16-bit addition

The destination registers form an odd:even pair, in
sub/subi sbe/sbei 16-bit subtraction the order second:first, and the first instruction sets
(defines) the carry flag for the second instruction.
cp/cpi cpc 16-bit comparison

eor eor The register pair is set to zero. The destination registers form an odd:even pair in
either order.

22 Supported AVR Features Bound-T for AVR

Instruction

Chained effect

Chaining condition

first second

mov eor 16-bit comparison to zero. The mov and eor have the same destination register

and the source registers form an odd:even pair in
either order.

Idi Idi The register pair is set to the The destination registers form an odd:even pair in
combined 16-bit value. either order.

Ids Ids The register pair is loaded with The source octets (memory addresses) form a 16-bit
the 16-bit value of the memory word with the right endianness (option -endian), and
word. the destination registers form an odd:even pair in the

corresponding order.

sts sts The 16-bit value of the register The destination octets (memory addresses) form a
pair is stored in the memory 16-bit word with the right endianness (option
word. -endian), and the source registers form an odd:even

pair in the corresponding order.

Id/ldd Idldd The register pair is loaded with Both instructions use the same pointer register; the
the 16-bit value of the memory destination registers form an odd:even pair; the
word, addressed by pointer + offsets differ by 1; and the order of the offsets gives
offset. the right endianness (option -endian) in the memory

word.
st/std st/std The 16-bit value of the register Both instructions use the same pointer register; the
pair is stored in the memory source registers form an even:odd pair; the offsets
word, addressed by pointer + differ by 1; and the order of the offsets gives the right
offset. endianness (option -endian) in the memory word.
push push The 16-bit value of the register The source registers form an odd:even pair and the
pair is pushed onto the stack. order in which they are pushed gives the right
endianness (option -endian) in the memory word in
the stack. For example, for little-endian order the odd
(high) octet must be pushed before the even (low)
octet (remember that the stack grows downwards).
pop pop The 16-bit value on top of the The destination registers form an odd:even pair and

stack is popped into the register the order in which they are popped matches the right

pair. endianness (option -endian) in the memory word in
the stack. For example, for little-endian order the
even (low) octet must be popped before the odd
(high) octet.

in in The register pair is loaded with The source octets (I/O addresses) form a 16-bit word
the 16-bit value read from the with the right endianness (option -endian), and the
1/0 register pair ("I/O word"). destination registers form an odd:even pair in the

corresponding order.

out out The destination octets (I/O addresses) form a 16-bit

The 16-bit value of the register
pair is written to the I/0
register pair ("I/O word").

word with the right endianness (option -endian), and
the source registers form an odd:even pair in the
corresponding order.

The cpi (compare with immediate value) instruction is not chained because there is no
“compare with carry” form and the processor does not chain the “equal” result (the Z flag)
between successive cpi instructions.

Bound-T for AVR

Supported AVR Features

23

5.6

5.7

24

Control-transfer instructions

The first and critical phase in Bound-T's analysis is to construct the control-flow graphs and the
call graph of all the subprograms to be analyzed. This requires a decoding and modelling of all
control-transfer instructions. Most AVR control-transfer instructions, such as jmp and call and
the conditional branch instructions like breq, statically define the target address and pose no
problem. In contrast, the indirect control-transfer instructions ijmp and icall and their extended
variants eijmp and eicall use a dynamically computed target address which may or may not be
resolved by Bound-T's analysis. The return instruction ret also uses a dynamically defined
target address, in this case popped from the stack.

Indirect jumps

The ijmp instruction is modelled properly as a jump to the address defined by the Z register
pair. Bound-T analyses this instruction as a possible jump to a table of further jumps, a code
idiom sometimes generated for switch-case statements.

The eijmp instruction is not supported because it relies on 24-bit computation of the extended
pointer EIND:Z. An error message is given for this instruction.

Indirect calls

An icall or eicall instruction is usually modelled as a dynamic call that cannot be resolved by
analysis. Thus it must be resolved by an assertion that lists the possible callees.

However, if the icall or eicall represents a virtual-function call in a C++ program compiled by
the IAR compiler, the possible callees can be found from the UBROF file because the UBROF
debugging information contains the C++ class structure which identifies all the subclasses and
their actual implementations of the virtual function. The model used then depends on the
setting of the generic command-line option -virtual:

« Under -virtual static, Bound-T models the icall/eicall as a non-deterministic choice between
static calls to each of the implementations of the virtual function, as defined in the UBROF
file. Bound-T does not try to reduce the set of callees by analysis, for example by analysing
the actual class of the "this" object.

« Under -virtual dynamic, Bound-T models the icall/eicall as a dynamic call that cannot be
resolved by analysis. An assertion is then necessary to resolve the call.

The latter case (-virtual dynamic) lets the user decide which subclasses can really occur at this
place in the program, by listing only the corresponding subset of possible callees.
Return instructions

At present, all ret and reti instructions are modelled as a return from the current subprogram.
They cannot be modelled as other kinds of dynamic transfer of control.

Stack-usage analysis

Processor stack (SP)

Bound-T analyzes stack usage on the normal SP stack by analyzing how the analyzed code
changes the SP register. The absolute value of the SP register is seldom visible to the analysis,
and is not an objective of the analysis.

The instructions that change the SP as a whole are the call instructions (call, icall, eicall); the
return instructions (ret, reti); and the push and pop instructions. All these instructions change
the SP by constant amounts and pose no problems for the stack-usage analysis.

Supported AVR Features Bound-T for AVR

However, in most AVR devices the low and high octets of the SP register, SPL and SPH, are
also accessible as I/0 registers and can thus be changed by out instructions. When a program
needs to change the SP by a largish amount, say decrease it by 713 to allocate 713 octets of
local stack space for the current subprogram, the program will read the SP by two in
instructions from SPH:SPL into a register pair, use a pair of sub (or subi) and sbc (or sbci)
instructions to subtract 713 from the register pair, and write the result back to the SP by two
out instructions. In its present form, Bound-T/AVR does not always model such computations
(especially if optimized in some way) well enough to deduce the resulting overall change in
the value of SP. This hampers stack-usage analysis for gcc-compiled programs, because gcc uses
the SP stack for local variables.

Software stacks

Because the AVR provides no direct SP-relative addressing, many AVR cross-compilers define a
second, "software" or "data" stack for local variables and parameters, and use the SP stack only
for return addresses. Bound-T/AVR supports the use of any one of the three pointer registers,
X, Y, Z as the stack pointer. The stack can grow upwards or downwards. The stack pointer and
the growth direction are set by the command-line option -swstack, or by default for the chosen
compiler, as described in section 2.4.

As for the SP stack, the analysis of stack usage in a software stack focuses on the changes in
the stack pointer, not the absolute value of the pointer. The code that manages software stacks
tends to be rather easier for Bound-T to analyze, than the corresponding code for the SP stack,
and so stack-usage analysis currently works better for compilers that use a software stack (in
addition to the SP stack).

Bound-T for AVR Supported AVR Features 25

6.1

6.2

26

SUPPORTED COMPILERS

Introduction

Bound-T analyses the binary code following the definition of the AVR instruction set. Ideally
this should make it possible to analyse any code, produced by any compiler or by manual
coding in assembly language. In practice, the analysis methods in Bound-T make certain
assumptions on how the code behaves which means that some forms of code cannot be
analysed or are difficult to analyse. The assumptions concern the following aspects:

« Procedure calling conventions and parameter-passing conventions.
+ Stack usage conventions.

+ Use of dynamic (indirect) jumps and calls, in particular for switch-case statements or virtual
function calls.

This chapter explains the assumptions that Bound-T for the AVR makes on these aspects of the
code to be analysed and how these assumptions are satisfied for the following compilers:

+ The IAR C/EC++ compiler for AVR [8]
+ The ImageCraft ICC V7 C compiler for AVR [6]
+ The GNU C compiler for AVR [5].

The information in this chapter is to some extent preliminary and may be incomplete or
describe foreseen rather than currently implemented functionality in Bound-T for the AVR.

Procedure calls in the AVR

In this chapter, we discuss how AVR programs use subprograms (procedures and functions)
and explain how Bound-T identifies subprograms and analyses the control-flow and data-flow
across subprogram calls and returns. For the AVR architecture this is a little more complex
than usual, for reasons that will be explained below. This means that you should know a little
about the procedure calling standards and should know or choose the standard used in your
program before using Bound-T.

Calling protocols

The AVR instruction set has dedicated instructions for calling subprograms (call, reall, icall,
eicall) and for returning from subprograms (ret, reti). All other aspects of subprogram calling,
such as the passing of parameters, the saving and restoring of registers, and the use of the
stack, are defined by software rules. Such rules are usually called a procedure calling standard
or calling convention or calling protocol.

This flexibility (or weak standardisation) means that Bound-T must be told which calling
protocol is used in the target program to be analysed. Moreover, Bound-T understands and
supports only a limited set of calling protocols, as follows:

- Both protocols that can be used in the IAR C/EC++ compiler for the AVR [8].

+ The protocol used in the ImageCraft ICC V7 compiler for the AVR [6], in two forms
depending on the ICC V7 compiler option -r20_23.

+ The protocol used in the GNU C compiler for the AVR [5], although support for this
protocol is quite limited at present.

Compilers Bound-T for AVR

In the remaining subsections of this chapter, we explain each supported calling protocol and
how Bound-T interprets it. Note that a calling protocol usually contains some rules that Bound-
T does not rely on for its analysis; thus we in fact support a superset of the calling protocol in
which these rules need not be followed.

The supported protocols have several common features:

+ The general registers are divided into two groups, the volatile registers that can be changed
by any subprogram, and the preserved registers that are assumed to preserve their value
across any subprogram call (thus the callee must save and restore these registers if it uses
them).

+ The return address is always passed in the hardware stack using the SP register as defined
for the AVR instructions call, ret and so on.

« Parameters may be passed in certain registers or in a stack.

« Function results are returned in certain registers, or indirectly through a passed pointer to a
result area allocated by the caller.

+ The stack for parameters (and local variables) may be the hardware stack or a software
stack which is a RAM area allocated by the compiler and accessed through a dedicated
pointer register, usually the Y register.

Auxiliary software stacks

Several compilers use the AVR hardware stack only for return addresses and define an
additional, auxiliary software-managed stack for passing parameters and holding local
variables. Bound-T can analyse six kinds of software stack, as follows:

+ The stack pointer can be one of the three index registers X, Y or Z.

« The stack can grow up, towards higher memory addresses, or down, towards lower memory
addresses.

The kind of software stack used in a given target program can be implied by the choice of
calling protocol or it can be defined by the command-line option -swstack=<D><P> where D
defines the direction ('+' for up, ' -' for down) and P is X, 'Y' or 'Z' (or the lower-case
equivalents) to define the stack pointer register. The most common form is -swstack=—Y, a
stack that grows downwards and uses register Y as the stack pointer.

The definition of the software stack determines the instructions that Bound-T models as stack
pushes, stack pops, or accesses to stack-allocated data (parameters or local variables). For
example, in a “~Y” stack, a push is an st instruction of the form st -Y,rn (decrement Y and then
store register rn in memory at address Y) and a pop is an Id instruction of the form Id rn,Y+
(load register rn from memory at address Y and then increment Y).

Prologue and epilogue routines

Subprograms using these calling protocols often start by storing several callee-save registers on
the stack and end by restoring the same registers from the stack. The compilers therefore
usually provide several library routines, here called prologue and epilogue routines, that can be
called to store and restore registers in this way. The compiler often inserts calls to these
routines in subprograms that use callee-save registers.

The prologue routines push callee-save registers on the stack and the epilogue routines pop
them from the stack. Thus, these routines do not themselves follow the calling protocol
(instead, they implement parts of this protocol). It would be contradictory for Bound-T to
model these routines as ordinary subprograms which are expected to following the protocol,
for example to preserve the height of the stack. Therefore, Bound-T tries to analyse all

Bound-T for AVR Compilers 27

6.3

28

prologue and epilogue routines as “integrated” routines. This means that the instructions in the
prologue or epilogue routine are modelled as integrated parts (steps) of the flow-graph of a
subprogram that calls the prologue or epilogue.

Consequently, the prologue and epilogue routines are not given flow-graphs of their own, all
their execution time and stack usage is included in the execution time and stack usage of the
subprograms that call them, and they do not appear in the call-graph of the program.

Bound-T can use two methods to classify a given subprogram as a normal subprogram or a
prologue or epilogue routine:

+ the symbolic name (identifier) of the subprogram, or
- the instructions in the subprogram.

Which method(s) are used can depend on the chosen (or implied) calling protocol and on
Bound-T command-line options.

When Bound-T uses the instructions in a subprogram to detect prologues and epilogues it
generally uses the following definition:

« A routine that consists entirely of a sequence instructions that push different registers on
the stack, followed by a ret instruction, is a prologue routine.

« A routine that consists entirely of a sequence instructions that pop different registers from
the stack, followed by a ret instruction, is an epilogue routine.

A compiler often implements a call to an epilogue routine as a jump instruction, instead of a
call instruction, because the call is a “tail call”. For such epilogue “calls” Bound-T always
integrates the epilogue routine in the caller's flow-graph because Bound-T does not recognise
the jump as a call.

Note that integrated decoding can be requested for specific subprograms by means of an
“integrate” assertion as explained in the Bound-T Assertion Language Manual [3].

The IAR C/EC++ compiler

General
Bound-T can TBA.

The IAR C/EC++ compiler provides a choice of two calling protocols, called “calling
conventions” in [8]:

- the original or “version 1” protocol, also called ICCA90 and activated with the command-
line option --version1_calls,

« the new calling protocol, which is the default.

Bound-T can analyse programs that use either protocol. Both protocols use the same sets of
volatile and preserved registers and use the processor stack and the auxiliary software stack in
the same general way; the protocols differ only in the algorithm that chooses which
parameters to pass in registers. Bound-T does not depend on this algorithm and thus both IAR
protocols are equivalent to Bound-T.

The IAR Calling Protocols

Introduction

The two IAR calling protocols have many common features that are described in this section.

Compilers Bound-T for AVR

Stacks

Both protocols use the processor stack (SP stack) for return addresses, but not for data such as
local variables or parameters; data are placed on the compiler-defined software stack with the
Y register as the stack pointer.

Data on the software stack are stored in little-endian order: the least significant octet has a
small address than the more significant octets.

Parameter passing

When parameters are passed on the stack (that is, the compiler-defined software stack with the
Y register as the stack pointer) they are pushed on the stack in some order. The choice of
parameters to be passed in the stack and the order of pushing can differ between the two IAR
protocols.

For multi-octet data the octets are pushed in decreasing significance order which results in
little-endian storage order.

Return from subprogram

The callee is responsible for popping the stacked parameters (that were pushed by the caller).
Thus, the overall effect of a subprogram usually decreases the height of the software stack
(more pops than pushes).

The callee returns with the normal ret instruction. Interrupt subprograms return with the reti
instruction. These instructions pop the return address (and the SREG, for reti) from the
processor stack, so the overall effect of a subprogram usually decreases the height of the
processor stack.

IAR Prologue and Epilogue Routines

The IAR compiler uses several prologue and epilogue routines that push callee-save registers
on the Y-stack or pop them from the Y-stack. As discussed above (section 6.2) these routines
should be decoded as integrated parts of the calling subprograms.

Bound-T uses the symbolic name (identifier) of a routine to classify it as a normal subprogram
or a prologue or epilogue. When a program is loaded from an UBROF file, any routine with a
name that starts with the string ?PROLOGUE is considered a prologue routine, and any
routine with a name that starts with the string ?EPILOGUE is considered an epilogue routine.

This default behaviour (integrating all prologue and epilogue calls) can be disabled with the
command-line option -logues=call. This option turns off the detection of prologue and epilogue
routines which means that calls to these routines are modelled in the normal way (as
references to the callee's flow-graph) unless integrated decoding is specifically requested for
specific routines by means of an “integrate” assertion as explained in the User Manual [].

However, the IAR compiler often implements a call to an epilogue routine as a jump
instruction, instead of a call instruction, because the call is a “tail call”. For such epilogue
“calls” Bound-T always integrates the epilogue routine in the caller's flow-graph, even under
the option -logues=call.

IAR Switch-Case Statements

The IAR compiler can generate several different types of code for switch-case statements,
depending on the form of the statement and on compilation options. Table 14 below lists these
forms, shows the value to be used in the IAR option --force_switch_type to make the compiler
generate this form, and explains if and how Bound-T can analyse each form.

Bound-T for AVR Compilers 29

Table 14: IAR Options for Switch-Case Statements

Form of code --force_switch_type Analysis in Bound-T

Library call with switch table 0 Analysed by partially evaluating the library

routine (the switch handler) with respect to the
(constant) switch table. See [9]. Depends on the
Bound-T option -switch_eval, see Table 2.

Inline code with switch table 1 Under investigation.

Inline compare/jump logic 2 Analysed as part of the normal control-flow

6.4

30

analysis. No special action is necessary.

The switch-table form (--force_switch_type 0) may reduce the code size if the program has
many switch-case statements, but the inline compare/jump logic (--force_switch_type 2) is
typically much faster in execution.

The ImageCraft ICCV7 compiler

General

Bound-T can analyse programs created with the ImageCraft ICCV7 compiler [6], provided that
the linker is set to generate the executable program as a COFF file [7].

The ICCV7 Calling Protocol

The caller pushes stacked parameters on the software stack (Y is stack pointer).

Parameter and result passing

Scalar parameters are passed in registers r16 - r19 allocating them in order of increasing
number but using two registers also for 8-bit parameters (the high-octet, odd-numbered
register is then not used).

If r16 and r17 are used to pass the first parameter and the second parameter is a 32-bit type
(long or float) the lower half of the second parameter is passed in r18 and r19 and the upper
half is passed on the software stack. However, this is not relevant to Bound-T because Bound-T
models neither long nor float values.

The remaining parameters are passed on the software stack. The Y register is the software-
stack pointer.

Structure parameters passed by value are always passed on the software stack, never in
registers. Structure parameter passed by reference are of course (scalar) pointers and may be
passed in registers or on the software stack.

A scalar result of a function is returned in registers r16 .. r19 in the same way. For functions
that return structures the caller passes a pointer to storage allocated in the caller and the
function stores its results through this pointer, as if the structure were passed by reference.

Preserved registers

The ICCV7 compiler assumes that the registers r10 - r15, r20 - r23 and r28 - 29 (Y) are
preserved across a call. (To be precise, the manual [6] says that assembly language
subprograms must preserve these registers; it is unclear if this applies to C functions in globally
optimized C programs.)

Compilers Bound-T for AVR

6.5

The compiler option -r20 _r23 makes the ICCV7 compiler leave registers r20 - r23 unused,
which means that the application programmer is free to use these registers in any way, and
they need not be preserved across calls. Bound-T uses the name “ICCV7a” for this variation of
the ICCV7 protocol (see Table 5, Supported Calling Protocols).

Volatile registers

The SREG and the general registers that are not preserved, thus r0 - r9, r16 - r19, r24 - r27 and
r30 - r31, are considered volatile and can be changed by any subprogram call. If option -r20 23
is used then Bound-T considers registers r20 - r23 to be volatile too.

Return from subprogram

The callee pops the stacked parameters from the software stack. Note that this means that
register Y is not preserved across all calls (TBC with ImageCraft).

ICCV7 prologue and epilogue routines

The ICCV7 compiler uses several prologue and epilogue routines to push or pop callee-save
registers and parameter registers onto or off the software stack, with Y as the stack pointer. As
discussed above (section 6.2) these routines should be decoded as integrated parts of the
calling subprograms.

The symbolic debug information in a COFF file from ICCV7 does not give any symbolic names
(identifiers) to the prologue and epilogue routines. Therefore Bound-T inspects the routine
contents (instructions) to detect prologues and epilogues as described in section 6.2.

ICCV7 switch-case statements

Under investigation.

The GNU GCC compiler

General

The GNU gcc compiler is widely used for AVR programming. Although gcc is commonly
considered to be more adapted to 32-bit processors the AVR port of gcc seems to be quite good,
even compared to more specialized compilers. Unfortunately, at present Bound-T/AVR
supports gcc poorly, because gcc generates code that is rather different from that generated by
other AVR compilers — one major difference being that gcc uses the SP stack for parameters
and local variables, where other compilers use software-defined stacks.

GCC Calling Protocol

Introduction

This section explains the procedure calling protocol (also called the “calling standard”) used by
the gcc compiler for the AVR. The description is taken from the AVR-Libc documentation [5].
The AVR gcc calling protocol has the following features:

« The hardware stack (SP register) is used for parameters and local variables as well as for
return addresses. There is no auxiliary software-defined stack.

« Prologue and epilogue sequences can be generated in-line (default) or as shared routines
that are invoked from the application subprograms (compiler option -mcall-prologues).

+ For in-line prologues, the option -mtiny-stack makes the compiler generate push/pop code
that changes only the low octet (SPL) of the stack pointer (see section 6.5).

Bound-T for AVR Compilers 31

32

« Register r0 is a general scratch register.

« Register r1 is always zero in C code. It can be nonzero only in subprograms written in
assembly language, and must be restored to zero when such a subprogram returns to C
code.

Endianness

Word data (16 bits) are stored in memory in little-endian order: first the low octet, then the

high octet.

Register usage

Table 15 below describes how gcc uses the AVR registers, in particular which registers are
invariant over a call (callee-save).

Table 15: GCC Register Usage

Register Usage In a call
ro General scratch register. Can be changed, need not be saved.
r Always zero in C code, r1 = 0. Callee must return it as zero to C code.
2.. 17 Local data. Invariant over a call. Callee-save.
r18 .. r27 Local data or scratch. Can be changed. Caller-save if needed.

r28..r29 =Y Local data. May be frame pointer. Invariant over a call. Callee-save.

r30..r31 =2 Local data or scratch. Can be changed. Caller-save if needed.

Stacked local variable access

Since the AVR has no useful SP-relative addressing mode, gcc often uses the Y register as a
frame pointer and accesses stacked data using Y-relative offset addressing in the Idd and std
instructions. However, the offset range in these instructions is limited to 0 .. 63, so in
subprograms with much local data the address of a stacked variable must generally be
computed using 16-bit additions.

GCC prologue and epilogue routines

Under the default options GCC generates prologue and epilogue code in-line in the application
subprogram. This needs no special action from Bound-T and should not cause any problems in
the analysis.

When GCC is given the compiler option -mcall-prologues it generates shared prologue and
epilogue routines that are invoked from the application subprograms that need them.
However, these invocations do not use the normal call instruction. To invoke a prologue GCC
generates code that stores the return address in the Z register and jumps to the prologue. The
prologue returns with an indirect jump instruction ijmp that jumps to the address in Z. Bound-
T analyses these jump instructions and the instructions in the prologue as if they were part of
the invoking subprogram. Bound-T may issue a warning about the dynamic indirect jump but
should be able to resolve this jump.

To invoke an epilogue GCC simply generates a jump to the epilogue routine (as in an
optimised tail call). The epilogue routine ends with a ret instruction that returns from the
application subprogram. Again Bound-T analyses the jump instruction and the instructions in
the epilogue as if they were part of the invoking subprogram.

Compilers Bound-T for AVR

In summary, GCC prologues and epilogues pose no special problems for the analysis. The
Bound-T command-line option -logues=call has no effect on the analysis of GCC programs
because Bound-T does not recognize that prologues or epilogues are involved in these jumps.
Prologues and epilogues are always analysed as if the option were -logues=integrate.

Stack-usage analysis

Stack-usage analysis works poorly at present for gcc-generated code, because the instruction
sequences that gcc generates to allocate and deallocate stack frames use 16-bit arithmetic with
the SPH:SPL pair in ways that Bound-T currently cannot analyse well.

GCC option -mtiny-stack

This option works under the assumption that the stack usage is never more than 255 TBC
octets and that there is no carry from the low octet to the high octet (SPH), for example
because the stack is allocated starting at a 256-octet boundary (SPL initial value is zero).

Note that gcc still assumes that the SP is 16 bits in size. For example, when gcc sets the Y
register to be the frame pointer it sets Y to SPH:SPL, using both the high and low octet of the
SP.

Support for this option in Bound-T is under investigation.

GCC switch-case statements

Bound-T cannot currently analyse gcc code for switch-case statements if the compiler has
generated a table of address for use with the ijmp instruction. Such tables tend to appear when
the switch-case statement has a densely numbered set of case values.

Support for such switch-case code is planned.

Bound-T for AVR Compilers 33

7 WARNINGS AND ERRORS FOR AVR

7.1 Warning messages

The following lists the Bound-T warning messages that are specific to the AVR or that have a
specific interpretation for this processor. The messages are listed in alphabetical order. The
Bound-T Reference Manual [1] explains the generic warning messages, all of which may
appear also when the AVR is the target. The Bound-T Assertion Language Manual [3] explains
the warning messages from the assertion parser.

The AVR-specific warning messages refer mainly to unsupported or approximated features of
the AVR.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.

Table 16: Warning Messages

Warning Message Meaning and Remedy
Ambiguous chaining with N Reasons ~ While trying to “chain” two 8-bit operations to a single 16-
possible chained operations. bit operation, Bound-T finds N > 1 possible 16-bit

operations that could represent the pair of 8-bit operations,
and therefore leaves the pair unchained.

Action Please report to Tidorum.
BREAK instruction taken as no- Reasons There is a break instruction at this point in the AVR
operation program. The “execution” time of a break instruction

depends on the occurrence of external events; Bound-T
does not include this time in the analysis.

Action Understand that the execution-time bound computed for
this part of the program does not include the time the
processor spends in break.

Call defines virtual mood C but Reasons At the present call in the program, there is a conflict

subprogram has S. between the calleer and the callee regarding the analysis of
virtual-function calls. The call specifies the analysis method
defined by the “mood” C, while the callee specifies S.

Action Please report the problem to Tidorum.
Callees unknown for virtual call: Reasons According to the UBROF file, the indirect (dynamic) call
class | function instruction at this point in the program is a call of the C++

virtual function through a pointer to an object of the
compile-time class, but Bound-T is unable to find the
possible real functions that might be called. The call is left
as an unresolved (open) dynamic call.

Action Ask Tidorum to analyse the problem. As a work-around, use
assertions to list the possible callees.

34 Warning Messages Bound-T for AVR

Warning Message

Meaning and Remedy

Code address wraps around from A Reasons
to B

Action
Immediate octet U used Reasons
signed = S

Action
Large combined 16-bit literal U Reasons
taken as signed = S

Action

Loading data from segment of type Reasons
T

Action

The address of the next instruction would normally be A,
but A is outside the range of code addresses in the chosen
AVR device. The actual address is therefore A modulo code-
memory size, which is B, a valid address for this device.

Verify that you have chosen the correct -device option. For
some small AVR devices compilers deliberately use rjmp
instructions that wrap around in this way.

When modelling an 8-bit operation between a register and
an immediate 8-bit operand, Bound-T chose to model the
immediate number as the signed (negative) quantity S
rather than the large unsigned quantity U.

This information can help to understand the results of loop-
bound analysis. Use the option -warn no_sign to suppress
these warning messages.

In its analysis of the program, Bound-T has combined
(“chained”) two 8-bit operations between two registers and
two 8-bit immediate operands (numbers) into a 16-bit
operation between this register pair and the 16-bit number
composed of the two 8-bit numbers. However, if the 16-bit
number is interpreted as an unsigned number U, it is so
large that Bound-T chooses to interpret it as the negative
number S.

This information can help to understand the results of loop-
bound analysis. Use the option -warn no_sign to suppress
these warning messages.

The UBROF file contains a segment that is marked to
contain constant data of type T. Bound-T loads this data
into its program model and assumes that the data are not
altered by the program as it runs.

Check that the program indeed does not change the data in
this segment.

No STABS symbols found Reasons

Action

Offset of parameter P exceeds Reasons
stack height at call, H

Action

The ELF target program (executable file) contains no
STABS symbol-table (debug information in STABS form).
Bound-T will try to use the ELF symbol-table instead.

If a STABS table is necessary, try to find the options for
your cross-compiler or linker that make them place STABS
information in the ELF file.

While analysing the parameters passed in this call, Bound-T
has found a stacked parameter P (shown here in the
machine-level form) that has such a large offset from the
start of the callee's stack frame that it cannot be a stack
location within the caller's stack frame, which only contains
H octets at the point of the call. The form of P shows if it
lies in the processor stack or in the auxiliary software stack.

Ask Tidorum to study the problem.

Bound-T for AVR Warning Messages 35

Warning Message

Meaning and Remedy

Program implies auxiliary stack A
but option forces stack B

Program implies protocol A but
option forces protocol B

Skipping non-Absolute segment of
type T

Skipping segment of type T

SLEEP time not included in

analysis

SPM instruction taken as no-

operation.

Starting IAR switch handling.

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

Action

Reasons

The form or content of the executable target program file
(eg. UBROF) suggests that the program uses an auxiliary
software-defined stack of type A (eg. using the Y register
and growing downwards), but a command-line option
forces Bound-T to assume a stack of the different type B in
the analysis.

Check that the command-line option is correct.

The form or content of the executable target program file
(eg. UBROF) suggests that the program uses calling
protocol A (eg. the IAR protocol), but a command-line
option forces Bound-T to use protocol B in the analysis.

Check that the command-line option is correct.

The UBROF program file being loaded contains a code
segment of type T that is not an “absolute” (relocated)
segment. Bound-T skips (ignores) this code.

Check that the UBROF file contains linked, executable code,
not merely compiled or assembled relocatable code. Bound-
T cannot analyse relocatable code.

The UBROF program file being loaded contains a segment
of type T that is not useful to Bound-T and is therefore
skipped (ignored).

If you think that this segment is relevant to the analysis,
please inform Tidorum about the problem.

There is a sleep instruction at this point in the AVR
program. The “execution” time of a sleep instruction
depends on the occurrence of external events; Bound-T
does not include this time in the analysis.

Understand that the execution-time bound computed for
this part of the program does not include the time the
processor spends in sleep.

There is an spm (Store Program Memory) instruction at
this point in the AVR program. Bound-T's model of spm
instructions is incomplete in two respects: Firstly, Bound-T
assumes that the program under analysis is fixed (not
variable), but spm changes the contents of program
memory (flash). Secondly, the execution time of an spm
instruction is variable, but Bound-T currently assumes only
one cycle for this time.

Firstly, check that the spm does not modify the parts of the
program that are being analysed. Secondly, understand that
the execution-time bound computed for this part of the
program may be underestimated, depending on the AVR
device and the function of this spm instruction.

The program contains a switch-case statement for which
the IAR compiler has generated a call to a library routine
and a switch table, and Bound-T is starting the partial
evaluation of the switch handler routine. Refer to the
-switch_eval option in Table 2.

36 Warning Messages

Bound-T for AVR

Warning Message

Meaning and Remedy

Action None, but the flow-graph for this subprogram may be larger
than expected because it will contain the partially
evaluated (expanded) residual code of the switch handler.

Value V exceeds 16 bits, R becomes Reasons During the partial evaluation of a switch handler, the

opaque. apparent value V of a 16-bit register-pair R exceeds the 16-
bit range for some (unknown) reason. The evaluation
continues with an unknown value in R.

Action The results of the partial evaluation may be in doubt. For
safety, change the compiler options or the program to avoid
this kind of switch-case code.

7.2 Error messages

The following lists the Bound-T error messages that are specific to the AVR or that have a
specific interpretation for this processor. The messages are listed in alphabetical order. The
Reference Manual [1] explains the generic error messages, all of which may appear also when
the AVR is the target. The Bound-T Assertion Language Manual [3] explains the error

messages from the assertion parser.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T

output that seems obscure.

Table 17: Error Messages

Error Message

Meaning and Remedy

Aborting switch-handler evaluation after Problem
N steps in the host flow graph.

Reasons

Solution

Calling protocol is not defined Problem

The analysis of an IAR switch handler routine is
aborted because the number N of steps (instructions)
generated in the flow-graph of the subprogram that
contains the switch-case statement has become larger
than expected.

The structure of the switch handler may be such that
the partial evaluation method [9] does not detect the
end of the switch table, and therefore continues
evaluating data after the switch table. Alternatively,
there may be so many cases in the switch-case
structure that the default limit on the size of the
flow-graph is too small.

Change the program or the compiler options to avoid
this kind of switch-case code, or try with a larger
value of the Bound-T option -switch_steps. If neither
works, contact Tidorum.

Bound-T cannot analyse the program because the
calling protocol is not defined.

Bound-T for AVR Error Messages 37

Error Message

Meaning and Remedy

Cannot determine executable file type

Reasons

Solution

Problem

Reasons

Solution

The target program file does not specify the calling
protocol that the program uses, nor was the protocol
specified with a command-line option.

Specify the protocol with a command-line option.
See Table 5.

Bound-T could not find out the type (COFF, ELF,
UBROF) of the executable target program file named
on the command line, and the type was not specified
with a -format option.

The file is not a COFF, ELF or UBROF file; or is
damaged; or uses a variant of COFF, ELF or UBROF
that Bound-T does not support.

Get an executable file in a form that Bound-T
suppports. If you are sure of the file format, try to
use the -format option.

Cannot read file

Code address A exceeds memory size M

octets; wrapped to B

Extended Indirect Jump/Call is not

supported

File not found

Ignoring asserted “virtual” values (must

be single value O .. 1).

38

Error Messages

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Bound-T was unable to open and read the executable
target program file.

The file's permissions do not allow reading, or the
file-name identifies an object that is not an ordinary
file (a directory name, for example).

Change the file permissions or correct the file-name.

The target address A of a call or jump instruction is
beyond the size of the code memory, M octets, in the
chosen AVR device. Bound-T uses the address A mod
M, which is B.

The program was probably compiled and linked for
an AVR device with a larger code memory.

Check and correct the -device option, or recompile
and relink the program for the correct device.

The program contains an eijmp or eicall instruction.
Bound-T does not yet support these instructions so it
will leave the jump or call unresolved.

The program is written in that way.

Avoid using these instructions or analyse the
program in parts, then add up the execution-time
bounds for the parts.

Bound-T could not open the executable file named
on the command line because there is no such file.

The file-name was mistyped; perhaps a directory
name is missing; or perhaps some directory included
in the file-name does not permit access.

Correct the file-name or change directory
permissions.

An assertion defines the value of the property
“virtual” (see Table 10) but allows multiple values or
values outside the valid range.

The assertion is in error.

Bound-T for AVR

Error Message

Meaning and Remedy

Illegal Load Indirect with pointer update

Illegal Load Program with pointer
update

Incorrect software stack definition:
-swstack=S

Incorrect switch_steps value:
-switch_steps=S§

Instruction not recognized

No -device was specified

Bound-T for AVR

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons
Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Correct or remove the assertion.

The program contains an Id instruction that uses
auto-increment or auto-decrement with a destination
register that is part of the pointer being auto-
modified. The result of such an instruction is
undefined, according to [4].

The target program is written in this way. See also
the other reasons listed for the error message
"Instruction not recognized".

Correct the target program. See also the other
solutions listed for the error message "Instruction not
recognized".

The program contains an Ipm instruction with auto-
increment and a destination register that is part of
the z pointer. The result of such an instruction is
undefined, according to [4].

The target program is written in this way. See also
the other reasons listed for the error message
"Instruction not recognized".

Correct the target program. See also the other
solutions listed for the error message "Instruction not
recognized".

The part S in the -swstack option is not of the
expected form.

Mistyped command-line option.
Correct the command-line option. See Table 2.

The part S in the -switch_steps option is not of the
expected form.

Mistyped command-line option.
Correct the command-line option. See Table 2.

The program contains an instruction word that
Bound-T cannot decode as a valid AVR instruction.

The target program file may be damaged; it may use
an extended AVR instruction set that Bound-T does
not support; it may contain code for some other
microprocessor family; or Bound-T's program-flow
analysis may be in error, making Bound-T try to
decode some program memory content that is not
meant to be decoded as AVR instructions (for
example, string constants stored in flash).

Use the option -trace decode to see where the error
occurs. Contact Tidorum if the error seems to be in
the program-flow analysis.

Bound-T cannot analyse this program because the
AVR device (chip or model) is not known.

There device was not specified on the command line.

Use the -device option. See Table 7.

Error Messages 39

Error Message

Meaning and Remedy

No instruction loaded at this address

0Odd octet address A cannot be an
instruction address

0Odd register number R for word
variable.

Patching is not implemented for this
target.

Return by offset X from strange state S

Unexpected end of COFF file
or

Unexpected end of ELF file

or

Unexpected end of UBROF file

40 Error Messages

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons

Solution

Problem

Reasons
Solution

Problem

Reasons

According to Bound-T's analysis, the program fetches
an instruction from a program memory address that
is blank; that is, the target program file does not load
any code at this address.

The target program file is incomplete; or the
program itself stores something at this address at
run-time with the spm instruction; or the command
line specifies a root-subprogram address that points
to a blank part of the program memory; or Bound-T's
program-flow analysis is in error.

Prepare a complete target-program file; avoid self-
modifying code; give the correct root-subprogram
address; or contact Tidorum if the error seems to be
in the program-flow analysis.

The command-line or an assertion specifies A as the
octet address of a subprogram or an instruction, but
this is impossible because A is an odd number while
all instructions lie at even octet addresses.

The command-line or assertion is in error.
Correct the command-line or the assertion.

The UBROF symbol-table entry for a word-sized (16-
bit) variable locates the variable in a register pair
that starts with an odd register number R.

The IAR compiler uses registers in a way that
conflicts with Bound-T's assumptions.

Use a version of the IAR compiler that Bound-T
supports, or report the problem to Tidorum.

The command-line contains a -patch option (a
general Bound-T option [1]) with a non-empty patch
file.

Patching is not implemented in Bound-T for the AVR.

Remove the -patch option from the command-line, or
ask Tidorum to implement this option for the AVR.

In this call, the callee has been asserted to return not
to the normal return point, but to an address offset
by X octets from the normal return point. However,
the modelled state S of the processor at the return
point is not a normal state, making the use of an
offset return suspect.

None known.
Please report the problem to Tidorum.

While Bound-T was reading the COFF (or ELF or
UBROF) target program the file ended at an
unexpected place.

The executable file is damaged or uses a variant of
COFF (or ELF or UBROF) that Bound-T does not
support.

Bound-T for AVR

Error Message

Meaning and Remedy

Solution Get an executable file in a form that Bound-T
suppports.

Unexpected end of file Problem While Bound-T was reading the target program the
file ended at an unexpected place.

Reasons The target program file is damaged or uses a variant
of COFF, ELF or UBROF that Bound-T does not
support.

Solution Get a a target program executable file in a form that
Bound-T suppports.

Unknown AVR calling protocol: Problem The part P in the -protocol option is not the name of a
-protocol=P supported calling protocol.

Reasons Mistyped command-line option.

Solution Correct the command-line option. See Table 5.
Unknown -endian vaue: -endian=FE Problem The part E in the -endian option is not "little" or "big".

Reasons Mistyped command-line option.

Solution Correct the command-line option. See Table 2.
Unknown -logues value: -logues=L Problem The part L in the -logues option is not one of the

supported choices.

Reasons Mistyped command-line option.

Solution Correct the command-line option. See Table 2.

Unknown -format value: -format=F Problem The part F in the -format option is not the name of an
executable format that Bound-T for AVR supports.

Reasons Mistyped command-line option.

Solution Correct the command-line option. See Table 3.

Unresolved indirect exit-jump from IAR Problem
switch handler.

Reasons

Solution
Unknown switch-offset value: Problem
-switch_offset=V

Reasons

Solution

While analysing an IAR switch handler using the
partial-evaluation method [9] Bound-T has found an
indirect jump that should exit (terminate) the
handler routine, but the partial evaluation is unable
to compute the target address.

The switch handler routine is too complex for this
method of analysis.

Change the program or the compilation options to
remove this kind of switch-case code. If that is not
possible, contact Tidorum.

The part V in the -switch_offset option is not one of
the supported choices.

Mistyped command-line option.

Correct the command-line option. See Table 2.

Bound-T for AVR Error Messages 41

42

Tidorum Ltd

Tiirasaarentie 32
FI-00200 Helsinki
Finland

www.tidorum.fi
info@tidorum.fi

Tel. +358 (0) 40 563 9186
Fax +358 (0) 42 563 9186
VAT FI 18688130

Bound-T for AVR

mailto:info@tidorum.fi
http://www.tidorum.fi/

	1Introduction
	1.1Purpose and scope
	1.2Overview
	1.3References
	1.4Abbreviations and acronyms
	1.5Typographic conventions

	2Using Bound-T for AVR
	2.1Overview
	2.2Support overview
	2.3Input formats
	2.4Command arguments and options
	2.5Supported AVR devices
	2.6Choice of procedure calling protocol

	3Writing AssertionS
	3.1Overview
	3.2Naming items by address
	Subprograms and code addresses
	Variables: registers and memory locations

	3.3Instruction roles
	3.4Properties

	4The AVR and Timing Analysis
	4.1The AVR
	An 8-bit RISC microcontroller
	Registers
	Address extension registers
	Condition flags
	I/O registers
	Memory map

	4.2Static execution-time analysis on the AVR

	5Supported AVR Features
	5.1Overview
	General support level

	5.2Reminder of generic limitations
	5.3Main assumptions
	5.4Instructions and computations
	Stack Pointer SP

	5.5Computations with 16-bit numbers
	The problem
	Chaining 8-bit operations into 16-bit operations

	5.6Control-transfer instructions
	5.7Stack-usage analysis

	6Supported Compilers
	6.1Introduction
	6.2Procedure calls in the AVR
	Calling protocols
	Auxiliary software stacks
	Prologue and epilogue routines

	6.3The IAR C/EC++ compiler
	Introduction
	Stacks
	Parameter passing
	Return from subprogram
	IAR Prologue and Epilogue Routines

	6.4The ImageCraft ICCV7 compiler
	Parameter and result passing
	Preserved registers
	Volatile registers
	Return from subprogram
	ICCV7 prologue and epilogue routines

	6.5The GNU GCC compiler
	Introduction
	Endianness
	Register usage
	Stacked local variable access
	GCC prologue and epilogue routines

	7Warnings and Errors for AVR
	7.1Warning messages
	7.2Error messages

