
Bound-T time and stack analyzer

Application Note

ADSP-21020

Issue 2
TR-AN-21020-001 2013-11-28 Tidorum Ltd.

Tid
rum

Tidorum Ltd
www.tidorum.fi
Tiirasaarentie 32
FI-00200 Helsinki
Finland

This document was written at Space Systems Finland Ltd by Niklas Holsti, Thomas Långbacka and
Sami Saarinen within an ESTEC-supported project to develop a worst-case execution-time analyser for
the ADSP-21020 processor architecture.

The document is currently maintained by Niklas Holsti at Tidorum Ltd.

Copyright © 2005, 2013 Tidorum Ltd.
This document can be copied and distributed freely, in any format, provided that it is kept entire, with
no deletions, insertions or changes, and that this copyright notice is included, prominently displayed,
and made applicable to all copies.

Document reference: TR-AN-21020-001
Document issue: 2
Document issue date: 2013-11-28
Bound-T/21020 version: 4b1
Last change included: BT-CH-0258
Web location: http://www.bound-t.com/app_notes/an-21020.pdf

Trademarks:
Bound-T is a trademark of Tidorum Ltd.

Credits:
This document was created with the free OpenOffice.org software, http://www.openoffice.org/.

Tid
rum

Preface

The information in this document is believed to be complete and accurate when the document
is issued. However, Tidorum Ltd. reserves the right to make future changes in the technical
specifications of the product Bound-T described here. For the most recent version of this
document, please refer to the web address http://www.bound-t.com/.

If you have comments or questions on this document or the product, they are welcome via
electronic mail to the address info@tidorum.fi, or via telephone, fax or ordinary mail to the
address given below.

Please note that our office is located in the time-zone GMT + 2 hours (+3 hours in the
summer) and office hours are 9:00 -16:00 local time.

Cordially,

Tidorum Ltd.

Telephone: +358 (0) 40 563 9186
Web: http://www.tidorum.fi/

http://www.bound-t.com/
Mail: info@tidorum.fi

Post: Tiirasaarentie 32
FI-00200 HELSINKI
Finland

Credits

The Bound-T tool was first developed by Space Systems Finland Ltd. (http://www.ssf.fi/) with
support from the European Space Agency (ESA/ESTEC). Free software has played an
important role; we are grateful to Ada Core Technology for the Gnat compiler, to William Pugh
and his group at the University of Maryland for the Omega system, to Michel Berkelaar for the
lp-solve program, to Mats Weber and EPFL-DI-LGL for Ada component libraries, and to Ted
Dennison for the OpenToken package. Call-graphs and flow-graphs from Bound-T are
displayed with the dot tool from AT&T Bell Laboratories. Some versions of Bound-T emit XML
data with the XML_EZ_Out package written by Marc Criley at McKae Technologies.

To implement the ADSP-21020 version of Bound-T, we have used both the free technical
information and the GCC-based compilers provided by Analog Devices Inc.

3

Contents

1 INTRODUCTION 7

1.1 Purpose and scope.. 7
1.2 Overview.. 7
1.3 References.. 8
1.4 Abbreviations and acronyms... 9
1.5 Typographic conventions... 9

2 USING BOUND-T FOR ADSP-21020 10

2.1 Input formats ... 10
2.2 Command arguments and options ..10
2.3 HRT analysis.. 14
2.4 Choice of calling protocol .. 14
2.5 Basic output format limitations .. 14

3 WRITING ASSERTIONS 16

3.1 Overview.. 16
3.2 Naming scopes ... 16
3.3 Naming subprograms .. 17
3.4 Naming variables .. 18
3.5 Naming statement labels... 18
3.6 Naming statements by source-line numbers..19
3.7 Naming items by address...19
3.8 Properties .. 19

4 THE ADSP-21020 AND TIMING ANALYSIS 22

4.1 The ADSP-21020 processor.. 22
4.2 Static execution time analysis on the ADSP-21020 ... 22

5 SUPPORTED ADSP-21020 FEATURES 23

5.1 Overview.. 23
5.2 Reminder of generic limitations .. 25
5.3 Support synopsis... 26
5.4 Data registers and memory accesses... 28
5.5 Registers and the C Calling Protocol.. 28
5.6 Modes, system registers, condition codes...29
5.7 Computational operations..30
5.8 Instructions... 31
5.9 Program Sequencer registers..32
5.10 Other registers... 32
5.11 Time accuracy and approximations... 32

6 WARNINGS AND ERRORS FOR THE ADSP-21020 38

6.1 Warning messages.. 38
6.2 Error messages... 44

4

Index of tables
Table 1: Command Options for ADSP-21020... 11

Table 2: ADSP-21020-Specific -trace Options... 13

Table 3: ADSP-21020-Specific -warn Options... 13

Table 4: Naming Scopes..16

Table 5: Assertable Properties for the ADSP-21020... 20

Table 6: Definition Analysis vs Arithmetic Analysis..24

Table 7: Generic Limitations of Bound-T...25

Table 8: Synopsis of ADSP-21020 Support..27

Table 9: DAGs Loaded and Used by an Instruction.. 33

Table 10: Effect of Memory Wait States on Execution Time...35

Table 11: Approximations for Instruction Times...36

Table 12: Warning Messages Specific to the ADSP-21020 Target..38

Table 13: Warnings for COFF Problems.. 42

Table 14: Warnings for Architecture File Problems.. 44

Table 15: Error Messages Specific to the ADSP-21020 Target..45

Table 16: Error Messages for COFF Problems...48

Table 17: Error Messages for Architecture File Problems...50

5

Document change log
Issue Section Changes

1 All First issue, written at and issued by Space Systems Finland Ltd., using the
FrameMaker tool.

2 All Imported into OpenOffice (via plain text). Change log started. Change bars
relative to issue 1 are not given. Page numbering is consecutive and starts from 1
for the front cover, for easier PDF handling.

All Chapters reordered to put the "user manual" chapters first and the "reference
manual" chapters last.

All Systematically using the name ADSP-21020 for the target processor.
Updated document layout to present Tidorum standard and content to version
4b1 of Bound-T for ADSP-21020.

6 Added tables of warning and error messages related to COFF files and
architecture files.

6

1 INTRODUCTION

1.1 Purpose and scope

Bound-T is a tool for computing bounds on the worst-case execution time and stack usage of
real-time programs by means of a static analysis of the machine code of the program. There
are different versions of Bound-T for different target processors. This Application Note supple-
ments the general Bound-T manuals (references [1], [2], and [3]) by giving additional
information and advice on using Bound-T for one particular target processor, the Analog
Devices Digital Signal Processor architecture known as the ADSP-21020 [5]. This information
includes

• the kinds of input files (executable programs) that Bound-T for ADSP-21020 can read,

• the ADSP-21020-specific command-line options for Bound-T,

• the ADSP-21020-specific details of the Bound-T assertion language, and

• the ADSP-21020-specific warning and error messages that Bound-T can emit.

Furthermore, the Application Note details how the analysis in Bound-T handles the features of
the ADSP-21020 architecture, with emphasis on features for which the analysis is approximate
or even absent.

Some information in this Application Note applies only when the target-program executable is
generated with the Analog Devices software-development tools (the g21k C compiler, the
assembler and linker [4]). This information could have been the subject of an independent
Application Note but was included here because these are the tools usually employed by ADSP-
21020 developers.

This Application Note is also applicable to other implementations of the same architecture,
such as the radiation-resistant TSC-21020 processor produced by ATMEL. All these processors
will be referred to collectively as "the ADSP-21020".

Note that Bound-T does not support the later ADI processors such as the 21060 and other
SHARC models.

There may be other Bound-T Application Notes on issues that are not limited to the ADSP-
21020, but nevertheless can be relevant when using Bound-T on ADSP-21020 programs. For
example, there may be Application Notes dealing with the target-independent properties of
certain cross-compilers, or the target-independent aspects of how Bound-T reads and
interprets certain executable-program formats. Check the Bound-T web-site
http://www.bound-t.com/ for such information.

1.2 Overview

The reader is assumed to be familiar with the general principles and usage of Bound-T, as
described in the Bound-T Reference Manual [1] and the Bound-T User Guide [2]. The User
Guide contains a glossary of terms, many of which will be used in this Application Note.

Bound-T for ADSP-21020 Introduction 7

http://www.bound-t.com/

In a nutshell, here is how Bound-T bounds the worst-case execution time (WCET) of a
subprogram: Starting from the executable, binary form of the program, Bound-T decodes the
machine instructions, constructs the control-flow graph, identifies loops, and (partially)
interprets the arithmetic operations to find the "loop-counter" variables that control the loops,
such as n in "for (n = 1; n < 20; n++) { ... }".

By comparing the initial value, step and limit value of the loop-counter variables, Bound-T
computes an upper bound on the number of times each loop is repeated. Combining the loop-
repetition bounds with the execution times of the subprogram's instructions gives an upper
bound on the worst-case execution time of the whole subprogram. If the subprogram calls
other subprograms, Bound-T constructs the call-graph and bounds the worst-case execution
time of the called subprograms in the same way.

When the program under analysis contains complex loops that Bound-T cannot analyse auto-
matically the user must set the repetition bounds for these loops. This is done by writing
assertions in the Bound-T assertion language [3]. Assertions can also guide and help the
analysis in other ways.

This Application Note explains how Bound-T has been adapted to the architecture of the
ADSP-21020 processor and how to use Bound-T to analyse programs for this processor. To
make full use of this information, the reader should be familiar with the register set and
instruction set of this processor, as presented in references [5] and [6].

The remainder of this Application Note is structured as follows:

The remainder of this Application Note is divided into a user guide part and reference part.
The user guide part consists of chapters 2 through 3 and is structured as follows:

• Chapter 2 explains those Bound-T command arguments and options that are wholly
specific to the ADSP-21020 or that have a specific interpretation for this processor.

• Chapter 3 addresses the user-defined assertions on target program behaviour and explains
the possibilities and limitations in the context of the ADSP-ADSP-21020 and the Analog
Devices development tools.

The remainder of the Application Note forms the reference part as follows:

• Chapter 4 describes the main features of the ADSP-21020 architecture and how they relate
to the functions of Bound-T.

• Chapter 5 defines in detail the set of ADSP-21020 instructions and registers that is
supported by Bound-T.

• Chapter 6 lists and explains all warning and error messages that this version of Bound-T
can emit, in addition to the generic messages that apply to any version of Bound-T. The
generic messages are described in the Bound-T Reference Manual [1].

1.3 References

[1] Bound-T Reference Manual.
Tidorum Ltd. Doc.ref. TR-RM-001.
http://www.bound-t.com/manuals/ref-manual.pdf

[2] Bound-T User Guide.
Tidorum Ltd., Doc.ref. TR-UG-001.
http://www.bound-t.com/manuals/user-guide.pdf

8 Introduction Bound-T for ADSP-21020

http://www.bound-t.com/manuals/user-guide.pdf
http://www.bound-t.com/manuals/ref-manual.pdf

[3] Bound-T Assertion Language.
Tidorum Ltd. Doc.ref. TR-UM-003.
http://www.bound-t.com/manuals/assertion-lang.pdf

[4] Using Bound-T in HRT Mode.
Tidorum Ltd. Doc.ref. TR-UM-002.
http://www.bound-t.com/manuals/hrt-manual.pdf

[5] ADSP-21020 User's Manual.
Analog Devices Inc. Second Edition, 1995.

[6] ADSP-21000 Family, C Tools Manual.
Analog Devices Inc. Third Edition, 1995.

[7] Bound-T Application Note: Virtuoso.
Space Systems Finland Ltd., Doc.ref. DET-SSF-MA-004.

1.4 Abbreviations and acronyms

See also reference [2] for terms specific to Bound-T and reference [5] for the mnemonic
operation codes and register names of the ADSP-21020.

ADI Analog Devices Inc.
ALU Arithmetic and Logic Unit
CCP C Calling Protocol
COFF Common Object File Format
DAG Data Address Generator
DAG1 Data Address Generator 1
DAG2 Data Address Generator 2
DM Data Memory
DSP Digital Signal Processor
HRT Hard Real Time [4]
PCSP PC Stack Protocol
PM Program Memory
TBA To Be Added
TBC To Be Confirmed
TBD To Be Determined
WCET Worst-Case Execution Time

1.5 Typographic conventions

We use the following fonts and styles to show the role of pieces of the text:

register The name of an ADSP-21020 register embedded in prose.

instruction An ADSP-21020 instruction.

-option A command-line option for Bound-T or other tools.

symbol A mathematical symbol or variable.

text Text quoted from a text / source file or command.

identifier An identifier from a program.

Bound-T for ADSP-21020 Introduction 9

http://www.bound-t.com/manuals/hrt-manual.pdf
http://www.bound-t.com/manuals/assertion-lang.pdf

2 USING BOUND-T FOR ADSP-21020

2.1 Input formats

Executable target-program files

The target program executable file must be supplied in COFF format. Two variants are
supported: little-endian with 18-byte symbol records, as produced by the ADI tools on
Microsoft Windows, and big-endian with 20-byte symbol records, as produced by the ADI
tools on Sun Solaris systems. The COFF headers are not used for this distinction, since we have
found them unreliable in this respect. Instead, the option -coff_unix must be given to select the
big-endian form.

Patch files not supported

Bound-T provides the general option -patch filename that names a file that contains patches to
be applied to the loaded target-program memory image before analysis starts. The format of
the patch file is specific to the target processor. The ADSP-21020 version of Bound-T does not
currently support patching and so no patch-file format is defined.

2.2 Command arguments and options

Generic options and arguments

The generic Bound-T command format, options and arguments are explained in the Bound-T
Reference Manual [1] and apply without modification to the ADSP-21020 version of Bound-T.
The command line usually has the form

boundt_sharc options target-program-file root-subprogram-names

(The name of the executable should perhaps have the form boundt_21020 rather than
boundt_sharc; the latter form was chosen because support for the later SHARC processors was
planned.)

For example, to analyse the execution time of the main subprogram in the target program
stored as the COFF file prog.coff under the option -trace calls, the command line is

boundt_sharc -trace calls prog.coff main

Root subprograms can be named by the link identifier, if present in the program symbol-table,
or by the entry address in hexadecimal form. Thus, if the entry address of the main
subprogram is 12A0 (hex), the above command can also be given as

boundt_sharc -trace calls prog.coff 12A0

All the generic Bound-T options apply. The generic option -help provides information about
the options Bound-T provides, either singly or in groups. For example, the option -help sharc
lists and describes all the options specific to the ADSP-21020 version of Bound-T.

10 Introduction Bound-T for ADSP-21020

ADSP-21020-specific options

The additional ADSP-21020-specific options are explained in Table 1 below.

Table 1: Command Options for ADSP-21020

Option Meaning and default value

-arch X Function X names an architecture file (.ach file) that Bound-T shall
read to find the memory segments and the memory banks.
See below for the way the architecture file is used.

Default A default architecture (defined within Bound-T, not in an
.ach file) as explained below.

-coff_endian big
-coff_endian little

Function Specifies the endianness (octet significance order) to be
assumed for the COFF file. The endianness may depend on
the cross-compiler that generated the COFF file.

See also the option -coff_unix .

Default Little-endian order: -coff_endian little .

-coff_sym_length L Function Specifies the length L, in octets, to be assumed for the symbol
records in the COFF file. The length may depend on the
cross-compiler that generated the COFF file.

See also the option -coff_unix .

Default A length of 18 octets: -coff_sym_length 18 .

-coff_trace Function See the coff item in the tracing options in Table 2.

Default No tracing.

-coff_unix Function Indicates that the COFF file comes from the ADI Unix tools
and is big-endian with 20-byte symbol records.

This is equivalent to the two options
 -coff_endian=big -coff_sym_length=20

Default The COFF file is assumed to come from the ADI MS-
Windows tools and be little-endian with 18-byte symbol
records.

This is equivalent to the two options
 -coff_endian=little -coff_sym_length=18

-dag_trace Function See the dag item in the tracing options in Table 2.

Default No tracing.

-dm_read_ws X Function Sets the number X of memory wait states assumed for a data-
memory read, if the memory location is not certain to be in
the stack (see -stack_read_ws). This value can be overridden
by user assertions.

Default Zero wait states: -dm_read_ws 0

-dm_write_ws X Function Sets the number X of memory wait states assumed for a data-
memory write, if the memory location is not certain to be in
the stack (see -stack_write_ws). This value can be overridden
by user assertions.

Default Zero wait states: -dm_write_ws 0

Bound-T for ADSP-21020 Introduction 11

Option Meaning and default value

-fetch_ws X Function Sets the number X of memory wait states assumed for an
instruction fetch from program memory. This value can be
overridden by user assertions.

Default Zero wait states: -fetch_ws 0

-pm_read_ws X Function Sets the number X of memory wait states assumed for a read
of data from the program memory. This value can be
overridden by user assertions.

Default Zero wait states: -pm_read_ws 0

-pm_write_ws X Function Sets the number X of memory wait states assumed for a write
of data to the program memory. This value can be overridden
by user assertions.

Default Zero wait states: -pm_write_ws 0

-root P Function Specifies the calling protocol P to be assumed for all root
subprograms. This setting can be overridden by user
assertions.

The possible values of P are ccp , pcsp , and isr , standing
respectively for the C calling protocol [6], the native PC-stack
protocol [5], and the ISR calling convention [5]. At present
Bound-T considers the ISR protocol to be the same as the
PCSP protocol.

Default Root subprogram are assumed to follow the C calling
protocol: -root ccp

-stack_read_ws X Function Sets the number X of memory wait states assumed for a read
from the stack, that is from a data-memory address which is
index register I6 or I7 plus an offset. This value can be
overridden by user assertions.

For a safe WCET bound, the value of this option should not
be greater than the value of -dm_read_ws. See section 5.11.

Default Zero wait states: -stack_read_ws 0

-stack_write_ws X Function Sets the number X of memory wait states assumed for a write
to the stack, that is to a data-memory address which is index
register I6 or I7 plus an offset. This value can be overridden by
user assertions.

For a safe WCET bound, the value of this option should not
be greater than the value of -dm_write_ws. See section 5.11.

Default Zero wait states: -stack_write_ws 0

Default architecture file

If no -arch option is given, Bound-T uses an internal default architecture that corresponds to
the following .ach file:

.system main;

.processor ADSP21020

.segment/pm/ram/begin=0x000000/ end=0x0000ff seg_rth;

12 Introduction Bound-T for ADSP-21020

.segment/pm/ram/begin=0x000100/ end=0x0003ff seg_init;

.segment/pm/ram/begin=0x000400/ end=0x003fff seg_pmco;

.segment/pm/ram/begin=0x004000/ end=0x007fff seg_pmda;

.segment/dm/ram/begin=0x00000000/end=0x00006fff seg_dmda;

.segment/dm/ram/begin=0x00007000/end=0x00007fff seg_stak;

.bank/pm0/wtstates=0/wtmode=internal/begin=0x000000;

.bank/pm1/wtstates=0/wtmode=internal/begin=0x008000;

.bank/dm0/wtstates=0/wtmode=neither/begin=0x00000000;

.bank/dm1/wtstates=0/wtmode=neither/begin=0x20000000;

.bank/dm2/wtstates=0/wtmode=neither/begin=0x40000000;

.bank/dm3/wtstates=0/wtmode=neither/begin=0x80000000;

.endsys

The architecture is currently used only to distinguish COFF sections that contain program
instructions from those that contain data. In future versions of Bound-T, the architecture may
be used to define the wait states, at least for PM and possibly for DM.

ADSP-21020-specific -trace options

Table 2 below describes the ADSP-21020-specific items for the generic option -trace, to ask for
certain additional outputs from Bound-T.

Table 2: ADSP-21020-Specific -trace Options
-trace item Traced information

coff COFF elements as they are read from the target program file. This may help to
understand problems with the COFF file and its interpretation.

If this option is selected together with the general -dump option, the COFF
data are displayed twice: once while reading them, and once after the whole
file has been read, as usual for -dump.

The option -coff_trace is a deprecated form, equivalent to -trace coff .

dag Extra NOP cycles assigned to a flow-graph edge for DAG load/use blocking. By
default, only the total number of edges and extra cycles are displayed (as
Notes).

ADSP-21020-specific -warn options

Table 3 below describes the ADSP-21020-specific items for the generic option -warn, to enable
or disable specific warnings from Bound-T. By default all these warnings are disabled.

Table 3: ADSP-21020-Specific -warn Options
-warn item Warning condition

coff_sc COFF symbols with strange "Storage Class" attributes, for which Bound-T
cannot assign a known location in memory.

exit Calls or jumps to the "_exit" subprogram, which terminates the program
under analysis, and which are therefore modelled as returns from the
subprogram in which they lie.

Bound-T for ADSP-21020 Introduction 13

-warn item Warning condition

short_loop DO UNTIL loops that are very short and therefore have loop termination
overhead (up to 2 cycles) when the actual number of iterations is small. Such
loops may cause some over-estimation in the WCET bound, up to the duration
of the loop termination overhead, per termination of the loop.

2.3 HRT analysis

The Hard Real Time (HRT) architecture pattern divides a real-time program in a specific way
into concurrent tasks and protected objects. Bound-T has a special analysis mode for HRT
programs. The general features and usage of this mode are described in reference [4]; there are
no specific considerations for the ADSP-21020.

For HRT programs the ADSP-21020 is sometimes used with the Virtuoso kernel from Eonic
Systems. Please refer to the separate Bound-T Application Note discussing Virtuoso [7].

2.4 Choice of calling protocol

The analysis of the computations in a subprogram depends on the calling protocol of the
subprogram. The C Calling Protocol (CCP, defined in [6]) enforces a register discipline that
considerably assists these analyses, as explained in section 5.5. The only alternative to the CCP
is the PC Stack Protocol (PCSP), the native ADSP-21020 call/return protocol which uses the
instructions CALL and RTS, and has no assumptions on register usage.

Bound-T assumes a protocol for a subprogram as follows:

• If there is a user assertion on the ccp property for this subprogram, this assertion defines
the calling protocol, as described in section 3.8.

• Otherwise, if the subprogram is a "root" subprogram (that is, a subprogram named on the
command line), the option -root defines the protocol; the default value of -root is CCP.

• Otherwise, the subprogram is analyzed by Bound-T only if it is called (directly or indirectly)
from a root subprogram. If the call uses the CCP calling sequence, the callee is assumed to
follow the CCP, otherwise the callee is assumed to follow the PCSP.

Therefore, in the absence of other specifications all root subprograms are assumed to use the
CCP, and the protocol for any lower-level subprogram is defined by the way it is called from
the higher-level subprograms. Bound-T emits a warning message if the same subprogram is
called with both CCP and PCSP (in different calls).

With the assertion file a property can be asserted for a subprogram to tell that it does not
follow the CCP register-usage rules internally, although it is called with the CCP sequence. See
section 3.8.

2.5 Basic output format limitations

Most Bound-T outputs, including warning and error messages, follow a common, basic format
that contains the source-file name and source-line number that are related to the message.
However, the ADI C tools [6] do not maintain mappings between source-line numbers and

14 Introduction Bound-T for ADSP-21020

program memory addresses for an optimised program. The source-line number will then be
missing from the message, or given in an inexact form, depending on the command-line option
-lines (see [1]).

Bound-T for ADSP-21020 Introduction 15

3 WRITING ASSERTIONS

3.1 Overview

This chapter explains any specific limitations and possibilities for user-specified assertions —
written in the Bound-T assertion language [3] — when Bound-T is used with ADSP-21020
programs. Most of these issues are not caused by the ADSP-21020 as target processor, but by
the Analog Devices development tools [6].

The issues concern the naming of subprograms, variables and source lines (via line numbers),
in particular for optimised executables.

The special properties that can be asserted for ADSP-21020 programs are listed at the end of
this chapter.

3.2 Naming scopes

The COFF file contains much symbolic information for debugging purposes. However, the
COFF standard does not directly support a hierarchical (block-structured) name-space.
Bound-T uses the source-file information to create scopes for symbols, as shown in Table 4
below. This gives unambiguous names to all subprograms and variables, even when they have
the same source-code identifier.

According to this table. the full Bound-T symbol-name for a subprogram contains two levels:
the first level is the name of the source file which contains the subprogram, and the second
level is the name of the subprogram itself. For example, if the source file "subs.c" contains a
function called "Foo", the Bound-T symbol for this subprogram is "subs.c|Foo", where the
solidus | is used to separate the two levels.

For a local variable, the symbol has three levels: the name of the source file, the name of the
subprogram which contains the local variable, and the name of the local variable itself. The
most complex case is a parameter passed in a register, which is like a local variable except that
the fixed string "Regparm" is inserted as level 3 and the parameter name is level 4.

Table 4: Naming Scopes

Type of symbol
Scope and name levels

Level 1 Level 2 Level 3 Level 4

Subprogram Source file Subprogram N/A N/A

Global variable Source file Variable N/A N/A

Parameter or
local variable

Source file Subprogram
Parameter
Variable

N/A

Parameter passed in
register

Source file Subprogram "Regparm" Parameter

Statement label in C
code

Source file Subprogram Label N/A

Label in assembly-
language code

Source file Label N/A N/A

16 Writing assertions Bound-T for ADSP-21020

Note that the ADI C compiler [6] prefixes each C subprogram, variable name, or statement
label with one underscore, "_". Moreover, for each parameter passed in a register, the C
compiler usually also allocates a local-variable slot in the call frame on the stack, with the same
name, which is why we add the "Regparm" scope to separate register parameters from local
variables.

For some examples, consider the following source-code snippet, assumed to be located in the
source file "jtables.c":

static int LastDCVal; /* predictor for DC coding */
 ...
void
ScaleQTable (UINT8 QFactor)
{
 unsigned int Quality;
 ...
 abort_here:
 ...
}

The C-level identifiers in this code will be accessible as the following symbols, where the
solidus '|' is the default scope delimiter:

• "jtables.c|_LastDCVal" (global variable)

• "jtables.c|_ScaleQTable" (subprogram)

• "jtables.c|_ScaleQTable|Regparm|_QFactor" (parameter in register)

• "jtables.c|_ScaleQTable|_QFactor" (parameter as local variable)

• "jtables.c|_ScaleQTable|_Quality" (local variable)

• jtables.c|_ScaleQTable|_abort_here" (statement label)

For assembly-language files, the ADI tools seems to put in the COFF symbol-table a source-file
name that is not the real source-file name, but the name of some temporary file, which is often
the same as the real source-file name but with the suffix changed to ".is".

3.3 Naming subprograms

The ADI C toolchain [6] generates the COFF Symbol Table information even for an optimised
executable. The Symbol Table contains the names of all subprograms (and also the statement
labels) and gives the corresponding Program Memory address for each of them. Thus, the
naming of subprograms poses no problems whether the code is optimised or not.

Subprograms are named using their linkage names, which for C functions is the C name
prefixed with an underscore. For example, "Foo" becomes "_Foo".

In addition to the linkage name there is one level of scope, which contains the source-file
name.

Bound-T for ADSP-21020 Writing assertions 17

3.4 Naming variables

Global C variables

The ADI C toolchain [6] generates COFF Symbol Table information listing the names and
addresses of all global variables, even for an optimised executable. Thus, global variables can
be named and tracked without problems, although the C compiler again prefixes all variable
names with an underscore.

The "static" i.e. file-scope qualifier has no effect on naming. All global variables have one level
of scope containing the source-file name, whether "static" or not.

Local C variables and C parameters

In a non-optimised compilation, symbolic information on local variables and parameters is
available, with two levels of scope: the source-file name and the subprogram name. A third,
synthetic "Regparm" level is added for parameters passed in registers.

Symbolic information on local variables is not provided in an optimised executable, and it
seems likely that optimisation can have drastic effects on the set of local variables, such as
deleting them in favour of using registers.

Assembler variables

Assembler variables are named as C variables, but the assembler respects the source-code
name and does not add any underscores or mangle the name in other ways.

The source-file name is provided as one level of scope. However, it seems that this is usually
not the real source-file name, such as "foo.asm", but the name of the pre-processed file where
the suffix is ."is", becoming "foo.is" for example.

Since Bound-T cannot distinguish assembly-language PM symbols meant to represent
subprograms from those that are meant to represent PM data, many such symbols will be
defined both as subprograms and as data cells. This should do no harm, unless you try to
analyse some data as it if were a subprogram.

3.5 Naming statement labels

Bound-T for the ADSP-21020 tries to make statement labels available as symbols, for use in
assertions that identify loops based on the label of some statement within the loop. This
applies both to statement labels in C code and in assembly-language code.

The ADI C compiler prefixes statement-label identifiers with an underscore, just as for
subprogram identifiers and variable identifiers. Therefore, a C label like "start" appears to
Bound-T as the symbol "_start".

Statement labels in assembly-language programs are entirely equivalent to subprogram
names, and Bound-T identifies them as both subprogram symbols and label . Typically, the
symbol scope for a statement label in assembly language consists only of the source-file name
and excludes the name of the subprogram which contains the label (because assembly-
language source-code seldom brackets subprograms with the "begin function" and "end
function" symbols).

18 Writing assertions Bound-T for ADSP-21020

Note that for eternal C-code loops (of the form " loop: ... goto loop;") the ADI C compiler can

place the label ("loop") on an instruction that is not within the loop body, in which case the
label cannot be used to identify this loop in an assertion.

3.6 Naming statements by source-line numbers

Bound-T for the ADSP-21020 supports the use of source-code line-numbers for identifying
statements in assertions. However, the ADI C compiler seems not to provide a mapping fmor
line-numbers to object-addresses, when the code is optimized, which of course prevents the
use of source line numbers in assertions.

Moreover, the ADI assembler seems never to provide such a mapping. Therefore, source-line
numbers cannot be used to identify program locations in assembly-language modules.

3.7 Naming items by address

The registers are named in assertions with the address keyword, followed by a quoted string.
The same keyword is used to name variables by their memory address. The value syntax for
registers is a one-letter register-set identifier followed by a decimal register number within the
valid range 0 - 15.

The valid register set identifiers are R for fixed point registers, I for index registers, M for
modifier registers, B for base registers, and L for length registers. Lower-case variants (r, i, m,
b, l) are also acceptable.

The memory addresses are given by a two-letter address-space identifier (DM for data memory
or PM for program memory, with case-insensitive matching) followed by the hexadecimal
address of the variable. The hexadecimal address is given by using decimal numbers 0 -9, and
letters a, b, c, d, e and f (case-insensitive). Note that the address must not be preceded by "0x"
nor surrounded by "16# .. #" nor followed by an "H" suffix.

Some examples of assertions naming registers or data addresses:

variable address "R3" 0 .. 100; -- Register R3 bounded.
variable address "r3" 0 .. 100; -- Same thing.

variable address "dm3fa7" = 20;
-- DM word at address hex 3FA7 (decimal 16295) holds
-- the value (decimal) 20.

3.8 Properties

The assertable properties for the ADSP-21020 are listed and explained in the following table.

Table 5: Assertable Properties for the ADSP-21020
Property name Meaning, values and default value

ccp Function Changes the assumed property of a subprogram to follow or
not to follow CCP register usage internally.

Note that this property has a meaning only in the
subprogram scope. Assertion scopes are explained in [3].

Bound-T for ADSP-21020 Writing assertions 19

Property name Meaning, values and default value

Values 1 - The subprogram follows the CCP-protocol both as called
and internally. The subprogram may use some other calling
protocol in its own calls to lower-level subprograms.

0 - The subprogram does not follow the CCP protocol.

Default The default is determined for each subprogram separately as
explained in section 2.4.

dm_read_ws Function Changes the number of data-memory read wait states in the
current context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-dm_read_ws.

dm_write_ws Function Changes the number of data-memory write wait states in the
current context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-dm_write_ws.

fetch_ws Function Changes the number of program-memory instruction fetch
wait states in the current context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-fetch_ws.

pm_read_ws Function Changes the number of program-memory data read wait
states in the current context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-pm_read_ws.

pm_write_ws Function Changes the number of program-memory data write wait
states in the current context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-pm_write_ws.

stack_read_ws Function Changes the number of stack read wait states in the current
context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-stack_read_ws.

stack_write_ws Function Changes the number of stack write wait states in the current
context.

Values Number of wait state cycles.

Default Zero wait states or the value given in a command-line option
-stack_write_ws.

20 Writing assertions Bound-T for ADSP-21020

4 THE ADSP-21020 AND TIMING ANALYSIS

4.1 The ADSP-21020 processor

The ADSP-21020 [5] is a 32-bit floating-point Digital Signal Processor (DSP). It has a Harvard
architecture (separated program and data memories) and pipelined fetch, decode and execute
cycles. Each instruction is 48 bits wide. Data can also be accessed in the program memory. A
2-way, set-associative instruction cache for 32 instructions reduces contention between fetches
and data accesses on the program-memory bus.

Integer addition, subtraction and multiplication are supported in hardware but division is not.
All floating point operations are supported in hardware. Special addressing hardware units
support access to vectors, arrays and circular buffers with little overhead from index
manipulations.

The ADSP-21020 supports zero-overhead loops, which are both nestable (six levels in
hardware) and interruptable. Both delayed and non-delayed branches are supported.

An on-chip subroutine call stack handles up to 19 nested calls (less one for each active
hardware loop). Programs written in C use a memory-resident stack and a specific calling
sequence [6] which is also often used by assembly-language libraries, at least when designed to
interface with C programs.

4.2 Static execution time analysis on the ADSP-21020

The ADSP-21020 architecture is very regular and quite fitting for static analysis by Bound-T.
Instruction timing in no case depends on the data being processed, but only on the control
flow.

The following architectural features can lead to approximate (over-estimated) execution times
for the concerned instructions:

• Instruction cache effects.

• Short DO UNTIL loops with few iterations.

• Memory wait states that vary in number depending on the address.

See section 5.11 for more information about the approximations.

Bound-T for ADSP-21020 The ADSP-21020 processor 21

5 SUPPORTED ADSP-21020 FEATURES

5.1 Overview

This section specifies which ADSP-21020 instructions, registers and status flags are supported
by Bound-T. We will first describe the extent of support in general terms, with exceptions
listed later. Note that in addition to the specific limitations concerning the ADSP-21020,
Bound-T also has generic limitations as described in the general manuals [1][2].

For reference, the generic limitations are briefly listed in section 5.2.

General support level

In general, when Bound-T is analysing a target program for the ADSP-21020, it can decode
and correctly time all instructions, with minor approximations.

Bound-T can construct the control-flow graphs and call-graphs for all instructions, with a few
exceptions. Bound-T supports both the processor's internal call/return protocol, using the
CALL, RTS, and RTI instructions, and the C Calling Protocol ([6], section 3.2.7).

When analysing loops to find the loop-counter variables, Bound-T is able to track all the
integer (fixed point) additions and subtractions. Bound-T correctly detects when this integer
computation is overridden by other computations, such as multiplications or floating-point
operations in the same registers. However, aliasing in the DM or PM may not be detected.

In summary, for a program written in a compiled language such as Ada or C, it is unlikely that
the Bound-T user will meet with any constraints or limitations that are specific to the ADSP-
21020 target system.

Before detailing the exceptions to the general support, some terminology needs to be defined
concerning the levels of support.

Levels of support

Four levels of support can be distinguished, corresponding to the four levels of analysis used
by Bound-T:

1. Instruction decoding: are all instructions correctly recognised and decoded? Is the
execution time of each instruction correctly and exactly included in the WCET, or only
approximately?

2. Control-flow analysis: are all jump, call and loop instructions correctly traced to their
possible destinations? Are there other instructions that could affect control flow, and are
they correctly decoded and entered in the control-flow graph?

3. Definition analysis: does the analysis correctly trace the effect of each instruction on the
data flow, in terms of which "cells" (registers, memory locations) are defined (written,
modified) by the instruction?

4. Arithmetic analysis: to what extent are the arithmetical operations of instructions
mastered, so that the range of the results can be bounded?

These levels are hierarchical in the sense that a feature is considered to be supported at one
level only if it is also supported at all the lower levels, with arithmetic analysis as the highest
level.

22 Supported ADSP-21020 features Bound-T for ADSP-21020

Opaque values

When an operation is supported at the definition level, but not at the arithmetic level, then
Bound-T's arithmetic analysis considers the operation's results to be "unknown" or opaque.

When an opaque value is stored in a register or memory location, the store is understood to
destroy the earlier (possibly non-opaque) value and replace it with the opaque value. For
arithmetic analysis, an opaque value represents an unconstrained value from the set of
possible values of the storage cell (32 bits for a general register, 1 bit for a flag).

The difference between definition analysis and arithmetic analysis is crucial to Bound-T's
ability to bound the worst-case times of loops. To illustrate this difference, Table 6 below lists
some ADSP-21020 instructions in the second column and their definition-analysis and
arithmetic analysis in the third and fourth columns. The instructions are assumed to be
executed in sequence. The analysis contains just the aspects supported by Bound-T.

Table 6: Definition Analysis vs Arithmetic Analysis
No. Instruction Definition analysis Arithmetic analysis

1 R4 = 33 R4 gets a new value. R4 gets the value 33.

2 R5 = R4 + 1 R5 gets a new value.
AZ, AN, AC get new values.

R5 gets the value R4 + 1, which is 34.
AZ, AN, AC all get the value 0.

3 COMP (R4, R5) AZ, AN, AC get new values. AN gets the value 1, since R4 < R5.
AZ and AC both get the value 0.

4 R7 = R4 * R5 R7 gets a new value. R7 gets an opaque value, because Bound-T
does not support multiplication in the general
arithmetic analysis. However, in this case,
where both operands have known values, the
constant-propagation analysis deduces that
R7 gets the value 33 · 34 = 1122.

5 MRF = R4 * R5 No effect, because the analysis
does not track the MRF
register.

No effect, because the analysis does not track
the MRF register.

6 R5 = RND MRF R5 gets a new value. R5 gets an opaque value, because any reading
of an unsupported register such as MRF is
opaque.

7 R1 = R5 - R4 R1 gets a new value.
AZ, AN, AC get new values.

R1 gets the value R5 - R4.
AZ gets the value 1 if R5 = R4, otherwise 0.
AN gets the value 1 if R5 < R4, otherwise 0.
AC gets the value 1 if R5 >= R4 or if R5 < 0,
otherwise 0 (assuming R4 =33)

Note that in the last row, arithmetic analysis tracks the fact that R1 is now the difference
between R5 and R4, even though R5 has an opaque value. Moreover, the analysis tracks the
dependencies of the condition flags on the relative values of R4 and R4. This tracking is
important, for example when Bound-T examines the way a loop-body modifies a variable, to
see if the variable is the loop-counter.

In fact, the same holds for all the table rows: arithmetic analysis tracks the formulae, not the
values; the values (or value ranges) are then calculated from the formulae when needed.

Bound-T for ADSP-21020 Supported ADSP-21020 features 23

Implications of limited support

Looking at the support levels from the Bound-T user's point of view, the following implications
arise when the target program uses some ADSP-21020 feature which is not supported at some
level.

• Arithmetic analysis: If a feature is supported at all levels except arithmetic analysis, then
using this feature in any loop-counter computation will keep Bound-T from identifying the
loop-counters (due to opaque values) so these loops cannot be bounded automatically.
However, the other results from Bound-T stay valid.

For example, if the initial value of a loop-counter is read from the MRF register, as for R5 in
Table 6, then Bound-T cannot compute bounds for the initial value and thus cannot bound the
loop.

• Definition analysis: If a feature is not supported in definition analysis, then in addition to
the preceding impact, using this feature implies a risk of invalidating the arithmetic
analysis, and thus a risk of incorrect results from Bound-T. Few ADSP-21020 features are at
this level of non-support, and Bound-T will warn if they are used.

For example, if the instruction R5 = RND MRF in Table 6 were not supported in the definition
analysis, it would not be seen to store a new value in R5, and the next instruction R1 = R5 - R4

would seem to get R5's value from the instruction R5 = R4 + 1, which would be quite wrong.

• Control-flow analysis: If a feature is not supported in control-flow analysis, then Bound-T
can produce arbitrary (correct or incorrect) results when this feature is used in the target
program, because the correct control-flow graphs cannot be determined. Again, Bound-T
will warn of such usage.

• Instruction decoding: If a feature is not supported even for decoding, then it is useless to
run Bound-T on a target program that uses this feature, since the only reliable result will be
error messages.

5.2 Reminder of generic limitations

To help the reader understand which limitations are specific to the ADSP-21020 architecture,
the following compact list of the generic limitations of Bound-T is presented.

Table 7: Generic Limitations of Bound-T
Generic limitation Remarks for ADSP-21020 target

Understands only integer operations in loop-
counter computations.

All results from floating-point operations are
considered opaque.

Understands only addition, subtraction and
multiplication by constants, in loop-counter
computations.

The multiplier and shifter also often produce
opaque values in the analysis model.

Assumes that loop-counter computations never
suffer overflow.

Leads to non-support of the saturation-mode
arithmetic (for counter computations), since it
makes a difference only for overflows. Thus,
the ALUSAT bit is ignored in condition codes.

Can bound only counter-based loops. No implications specific to the ADSP-21020,
although the ADSP-21020 instructions for
zero-overhead loops may guide programmers
to use counter-based loops more frequently.

24 Supported ADSP-21020 features Bound-T for ADSP-21020

Generic limitation Remarks for ADSP-21020 target

May not resolve aliasing in dynamic memory
addressing.

No implications specific to the ADSP-21020.

5.3 Support synopsis

The following table gives a synoptical view of the level of support for ADSP-21020 features. A
plus "+" in a cell means that the feature corresponding to the table row is supported on the
level corresponding to the table column. A shaded cell indicates lack of support.

The features are ordered from the fully supported at the top, to the unsupported at the bottom.
More detail on the support level is given in the following sections.

Bound-T for ADSP-21020 Supported ADSP-21020 features 25

Table 8: Synopsis of ADSP-21020 Support

ADSP-21020 registers, instructions, or other
features

Remarks

R0 .. R15: fixed point, addition, subtraction + + + +

R0 .. R15: XOR when both operands are the same
register

+ + + + Equivalent to zero.

Index registers I0 .. I15, except bit-reverse + + + +

M0 .. M15

L0 .. L15

B0 .. B15

+ + + + The C Calling Protocol requires some
M and L registers to hold constants.

ASTAT flags AZ, AN, AC + + + +

Condition codes: EQ, LT, LE, AC, NE, GE, GT, NOT AC + + + +

NOP and IDLE instructions + + + + The idling time is not considered.

R0 .. R15, fixed point: multiplication, shift, average
AND, OR, NOT, CLIP

XOR for two different registers

+ + + If the operation sets a flag to a
constant (usually zero), then the flag
is supported for arithmetic, too.

Index register I0 .. I7 bit-reverse operations + + +

F0 .. F15, floating point, all operations + + +

Condition codes other than the above + + +

The use of circular buffers + + +

Reading (via Universal Register address):
PC, PCSTK, PCSTKP

FADDR, DADDR, LADDR

CURLCNTR, LCNTR

+ + +

System registers read or written via Universal
Register address, or modified by system-register bit-
manipulation:
MODE1 (not alternate register bits), MODE2

ASTAT (see above for flags)
STKY, IRPTL, IMASK, PMWAIT, DMWAIT

+ + + Instructions that store values in
PMWAIT and DMWAIT have no effect on
the number of memory wait states
assumed for instruction timing; that
assumption is set by the command-
line options -xxx_ws .

Alternate (secondary) registers as controlled by
MODE1 bits.
Memory access with index register I0 in bit-reversed
mode as controlled by MODE1 bit BR0.

+ + An assignment to MODE1 will
generate a warning message.

Assignment (via Universal Register address) to:
PCSTK, PCSTKP,
LADDR, CURLCNTR, LCNTR.
Push or pop of loop stack or status stack.

+ The possible effect on control-flow is
not modelled. A warning message is
generated.

Instructions for later SHARC processors Only ADSP-21020 instructions are
supported and decoded. Other
instructions lead to error messages.

26 Supported ADSP-21020 features Bound-T for ADSP-21020

D
e

co
d

in
g

C
o

n
tr

o
l

fl
o

w

D
e

fi
n

it
io

n

A
ri

th
m

e
ti

c

5.4 Data registers and memory accesses

The ADSP-21020 contains several sets of registers with different roles. This section explains
how Bound-T supports these registers. The next section describes the additional support when
the C Calling Protocol is in use.

Fixed-point register file R0 - R15

All ADSP-21020 register file locations (R0 - R15) are supported fully by Bound-T in fixed-point
use. Each register is modelled as a separate data cell. However, there are general limitations on
the modelling of overflow and signedness.

Floating-point register file F0 - F15

Floating-point operations (F0 -F15) are not supported in arithmetic analysis, but only as
storing an opaque value in the underlying fixed-point register-file location (Ri corresponds to
Fi). The registers F0 - F15 are not even modelled as data cells, just as opaque views of R0 - R15.

Index and Modify Registers

The use of ADSP-21020 index registers (I0 - I15) is fully supported. Bit-reversed indexing is not
supported in the arithmetic analysis.

Modify registers (M0 - M15) are fully supported.

Length and Base registers

The use of length registers (L0 - L15) and base registers (B0 - B15) is supported fully. However
the use of circular data buffers with length and base registers is supported only on the
definition level, and is not modelled in the arithmetic analysis.

Universal Register addressing

The ADSP-21020 has a mechanism of "universal register addressing" using an 8-bit address to
define the source and destination for some data-moving instructions ([5], section A-5).

The addressable registers include the general register file R0 - R15, all the index, modifier,
length and base registers, the Program Sequencing registers, the system registers including
ASTAT, and several registers related to memory banks, busses and timers.

Fortunately, the universal register address is always statically known from the ADSP-21020
instruction (it is an immediate field). Thus, Bound-T supports universal register addressing of
R0 - R15, I0 - I15, M0 - M15, L0 - L15 and B0 - B15 for arithmetic analysis.

The other universally-addressable registers are discussed later in this chapter. Most of them
are supported only on the definition level.

5.5 Registers and the C Calling Protocol

The C Calling Protocol (CCP) ([6], section 4.2.1) is a set of rules on register usage that
influences Bound-T's analysis. For each subprogram it analyses, Bound-T chooses whether or
not to assume the CCP rules (as explained in section 2.4). The CCP rules are the following.

Firstly, CCP divides the ADSP-21020 registers into two subsets: compiler registers that are
preserved across any call, and scratch registers that need not be preserved. Bound-T supports
and uses this distinction in its arithmetic analysis.

Bound-T for ADSP-21020 Supported ADSP-21020 features 27

Secondly, in CCP the index registers I6 and I7 are used as frame and stack pointers,
respectively. Bound-T relies on I6 to trace the use of subprogram parameters in arithmetic
operations (when the subprogram is analysed separately for each call). I6 should be modified
only in the calling and returning sequences. Bound-T checks this and generate a warning if the
rule is broken.

Thirdly, CCP specifies which registers are used for passing parameters and function values.
The first three 32-bit parameters are passed in R4, R8, R12, and remaining parameters on the
stack; a 32-bit return value is in R0 and a 64-bit value in R0 and R1. Bound-T uses these rules
in arithmetic analysis to bring numerical values from the actual parameters at the call site, to a
call-specific analysis of the callee.

Finally, CCP specifies that some M registers have fixed values: M5 = M13 = 0, M6 = M14 = 1, and
M7 = M15 = -1. Also all L registers are specified to be zero. Bound-T uses these rules as
background knowledge in the arithmetic analysis.

The C Calling Protocol also defines specific instruction sequences (code idioms) for calling a
subprogram and for returning from one. Bound-T detects these sequences by look-ahead in the
instruction decoder.

5.6 Modes, system registers, condition codes

The ASTAT status flags that are supported in arithmetic analysis are AZ (ALU result zero), AN

(ALU result negative) and AC (ALU fixed-point carry).

For arithmetic analysis of condition codes, the ASTAT status flags are only used when they are
defined by a fixed-point operation (AF = 0). In addition, since the saturation arithmetic is not
supported, we can assume ALUSAT = 0 and thus the following simplified definitions of the
supported ADSP-21020 condition codes can be used:

LT = AN and -AZ

LE = AN or AZ

GE = -AN or AZ

GT = -AN and -AZ

The condition code TRUE is of course supported fully. The LCE condition code is fully
supported in DO UNTIL LCE loops. The remaining condition codes are considered opaque in
ordinary conditional instructions, as is LCE in that context.

Direct assignment to the ASTAT register via universal register addressing is understood as
storing opaque values in the status flags. However, if the assigned value is an immediate
constant, the supported status flags are set to the correct immediate values. If the ASTAT

register is updated with a system-register bit-manipulation instruction, the new values of the
supported status flags are correctly modelled on all levels.

The use of system registers other than ASTAT is supported only on the definition level; all their
values are considered opaque.

5.7 Computational operations

Whether or not a computational operation is supported on the arithmetic analysis level
depends exclusively on the generic abilities of Bound-T; the only concern here is to map these
abilities onto the ADSP-21020 instruction set.

28 Supported ADSP-21020 features Bound-T for ADSP-21020

Fixed-point operations

All fixed-point ALU operations are supported for definition analysis. The following addition,
subtraction and comparison operations are supported for arithmetic analysis:

Rn = Rx + Ry
Rn = Rx - Ry
Rn = Rx + Ry + CI
Rn = Rx - Ry + CI - 1
COMP(Rx, Ry)
Rn = Rx + CI
Rn = Rx + CI - 1
Rn = Rx + 1
Rn = Rx - 1
Rn = -Rx
Rn = PASS Rx
Rn = ABS Rx

For these operations, the arithmetic effect is supported for the ALU status flags AZ, AN and AC.

When programming in assembly language, it is advisable to limit all loop-counter arithmetic to
use only the above operations and move-operations (and other features supported on the
arithmetic level). This will maximise Bound-T's automatic loop-bounding ability.

The fixed-point ALU operations that are not supported in arithmetic analysis are AND, OR,
XOR, NOT, CLIP and Average (Rn = [Rx + Ry] / 2). In arithmetic analysis these operations are
understood to store opaque values in the target register and the status flags.

As a special case, XOR is supported for arithmetic when its left and right operands are the same
register, since the result is always zero. Moreover, if an operation yields a constant flag value
(usually zero), then this flag is supported arithmetically for this operation.

Shifter and multiplier operations

Shift operations with literal (immediate) shift-counts could be supported on the arithmetic
level, when they are equivalent to multiplication of a register by a constant, but the present
version of Bound-T for the ADSP-21020 does not yet support this; the result of any shift
operation is considered opaque.

Other shifter and multiplier operations are supported in definition analysis, but not for
arithmetic analysis, where they are understood as storing an opaque value in the target
register.

However, for the operations that do not modify a general register, such as multiplier
operations that use the multiplier result register as target, or the BTST (bit test) shifter
operation, the target-register value is left untouched and is not made opaque.

Floating-point operations

Floating-point ALU operations are supported on the definition level but not on the arithmetic
level, where they are seen as storing opaque values in the target register and the ALU status
flags (see section 5.6).

One floating-point ALU operation, COMP, does not redefine the target register value and for
this operation the target-register value is left untouched and is not made opaque.

Multifunction operations

The definition-analysis and arithmetic analysis of multifunction operations is done in the same
way as for the similar single operations.

Bound-T for ADSP-21020 Supported ADSP-21020 features 29

The level of support is determined independently for each part of the multifunction operation.

5.8 Instructions

How an instruction is supported is determined mainly by the computational operations it
contains. Below, the instruction groups are discussed in the same order as in appendix A of
reference [5].

All the "compute" instructions are supported on the definition level, including the "move" and
"register modify" or "immediate modify" sub-operations. Arithmetic support depends on the
data type and operation as explained in section 5.7.

All the "immediate shift" instructions are supported on the definition level, and some are
supported on the arithmetic level; see section 5.7.

Branch instructions

All jump and call instructions are supported on all levels. However, there are generic
limitations on the control-flow analysis of indirect jumps and calls, where the target address is
not static but is dynamically computed at run-time.

All return instructions are supported on all levels.

Loops

All DO UNTIL instructions are supported on all levels. Recall that there are generic limitations
on the bounding of loops, depending on the complexity of the loop's termination conditions.

All DO UNTIL LCE loops are arithmetically analysed, and can be bounded if the initial value of
LCNTR is arithmetically bounded.

Moves and miscellanea

All "move" instructions are supported on the arithmetic level when the source and target are
fixed-point registers or fixed-point variables in static memory locations. When the source or
target are floating-point registers or floating-point variables in static memory locations,
support is reduced to the definition level. For universal register moves, see sections 5.4, 5.9
and 5.10.

System-register bit-manipulation is supported on the definition level except for changes to
MODE1 that could activate the bit-reversal mode of index register I0, or activate alternate
(secondary) register sets.

Bit-reverse operations for index registers I0 -I7 are supported on the definition level but are not
supported for arithmetic analysis. They will also hamper the identification of aliases in
indirectly addressed memory locations and thus weaken the definition analysis.

Push and pop of the loop stack or status stack are not supported on the control-flow level,
even, because they alter the program sequencing state in a complex way.

The NOP operation is supported on all levels, of course.

The IDLE instruction is supported on all levels, but Bound-T issues a message to warn that the
idling time is not included in the WCET results.

30 Supported ADSP-21020 features Bound-T for ADSP-21020

5.9 Program Sequencer registers

The direct reading (via universal register addressing) of registers in the Program Sequencer is
supported in Bound-T on the definition level (but all values read are considered opaque).
These registers are the following, where an asterisk (*) indicates a read-only register:

PC* program counter

PCSTK top of PC stack

PCSTKP PC stack pointer

FADDR* fetch address

DADDR* decode address

LADDR loop termination address

CURLCNTR current loop counter

LCNTR loop counter

Writing values into these registers may alter the control flow in a way that Bound-T does not
model, and so such writes are supported only on the instruction decoding level. If they occur in
the target program, it is the user's responsibility to judge if Bound-T's results are still valid for
WCET analysis.

5.10 Other registers

Any register not discussed above is supported at the definition level, but lumped together.
Reading such a register yields an opaque value and writing into the register has no effect on
control-flow or other modelled data values.

This includes registers such as DMWAIT and PMWAIT that define the wait-states for memory
accesses. In other words, Bound-T does not track the values assigned to DMWAIT and PMWAIT

to adjust the time it assigns to instructions. The number of memory wait states is set by
command-line options (the -xxx_ws options).

5.11 Time accuracy and approximations

Bound-T reports WCET values that take into account most of the timing features of the ADSP-
21020. This section explains these features, how Bound-T models them, and where Bound-T
must make assumptions or approximations.

Writes to DAG registers or Memory Control Registers

According to section 7.2.1.5 of [5], the ADSP-21020 inserts an extra NOP cycle between two
consecutively executed instructions if the first instruction "loads a DAG register" and the
second instruction uses the same DAG "for data addressing". The explanation in [5] does not
say exactly which instructions have these properties. Bound-T follows the behaviour of the ADI
simulator for the ADSP-21020. This behaviour is shown in Table 9 in terms of the DAGs
"loaded" and "used" by each type of instruction that accesses memory or a DAG. (DAG1 is for
the Data Memory and DAG2 for the Program Memory.)

Bound-T for ADSP-21020 Supported ADSP-21020 features 31

Table 9: DAGs Loaded and Used by an Instruction
Instruction type and page in [5] Loads DAGs Uses DAGs

compute / dreg ↔ DM / dreg ↔ PM
A-12

none 1 and 2

compute / ureg ↔ DM|PM, register modify
A-14

1 if target ureg is in DAG1
2 if target ureg is in DAG2

else none

1 if DM
2 if PM

compute / dreg ↔ DM|PM, immediate modify
A-16

none 1 if DM
2 if PM

compute / ureg ↔ ureg

A-18

1 if target ureg is in DAG1
2 if target ureg is in DAG2

else none

none (even if the source ureg is
in a DAG)

immediate shift / dreg ↔ DM|PM

A-20

none 1 if DM
2 if PM

compute / modify

A-22

none 1 if DAG1 register is modified
2 if DAG2 register is modified

indirect jump|call / compute

A-26

none 2 if indirect (via DAG2)
else none (if PC-relative)

do until counter expired

A-30

none none (even if LCNTR is initial-
ized from a DAG register)

ureg ↔ DM|PM (direct addressing)
A-34

1 if target ureg is in DAG1
2 if target ureg is in DAG2

else none

none

ureg ↔ DM|PM (indirect addressing)

A-35

1 if target ureg is in DAG1
2 if target ureg is in DAG2

else none

1 if DM
2 if PM

immediate data → DM|PM
A-36

none 1 if DM
2 if PM

immediate data → ureg
A-37

1 if target ureg is in DAG1
2 if target ureg is in DAG2

else none

none

I register modify / bit-reverse
A-42

none 1 if DAG1 register is modified
or bit-reversed

2 if DAG2 register is modified
(bit-reverse is N/A for DAG2)

As an example, consider an instruction of type "A-14" that loads an index register in DAG1
from PM. An example of such an instruction is:

r4=r0+r2, i4=pm(i12,m13)

This instruction takes one cycle to execute, plus one cycle more since it accesses PM data (and
if we assume that the next instruction is not in the cache). If the next instruction uses DAG1,
one more extra NOP cycle is created, increasing the duration of the example instruction to 3
cycles (or more if there are PM wait states).

32 Supported ADSP-21020 features Bound-T for ADSP-21020

Whether an instruction "loads" or "uses" a DAG can also depend on the condition of the
instruction; see below.

Call and return sequences

For any kind of subprogram call, whether it uses the C Calling Protocol (CCP) or the PC Stack
Protocol (PCSP), Bound-T includes the call-sequence in the caller's execution time and the
return-sequence in the callee's time. Thus, the WCET reported for a given subprogram
corresponds to an execution from the first instruction at the subprogram's entry point, up to
and including the last instruction of the subprogram.

DAG load/use blocking, as discussed above, may occur at a CCP return. The last instruction of
the CCP return-sequence pops the old frame pointer (index register I6) from the DM stack and
thus "loads" DAG1. If the instruction after the call "uses" DAG1, one NOP cycle results, which
Bound-T includes in the caller's execution time. Note that the ADI simulator for the ADSP-
21020 adds this NOP cycle to the callee's last instruction.

Timing of conditional instructions

Many ADSP-21020 instructions can be conditional in the sense that the instruction is executed
only if a status flag is true (or false). The User's Manual [5] is not entirely clear on how the
value of the conditition affects the execution time of a conditional instruction. Based on
experiments with the ADI simulator for the ADSP-21020, Bound-T uses the following rules:

• A conditional instruction that accesses the DM incurs DM wait-state cycles only when the
condition is true.

• For a conditional instruction that accesses the PM for data, an instruction-cache miss
always causes one extra cycle, whether the condition is true or false, but the instruction
incurs PM wait-state cycles for the data access only when the condition is true.

• A conditional instruction that "loads a DAG register" (as defined in Table 9) does so only
when the condition is true. If the condition is false, the DAG register is not loaded (well, of
course) and the next instruction can use this DAG without extra delay.

• An instruction that "uses a DAG register" (as defined in Table 9) does so always, whether its
condition (if any) is true or false. Therefore, if the preceding instruction "loaded" a register
in this DAG, one extra cycle is inserted even if the condition is false.

Memory wait-states

The ADSP-21020 User's Manual [5] states in section 7.2.1.6 that internally programmed
memory wait states cause one cycle of delay for each wait state. The behaviour of the ADI
simulator is a little more complex. The number of cycles taken by instructions of various types
is shown in Table 10 as a function of the number d of DM wait states, the number f of PM wait
states for instruction fetch, and the number p of PM wait states for data access. Bound-T
follows this table.

Table 10: Effect of Memory Wait States on Execution Time
Instruction type in terms of the

memory data accesses
Execution time in cycles for d, f and p as

explained in the text

No DM or PM data access 1 + f

Access DM only 1 + max (f, d)

Access PM only, condition false 2 + f

Access PM only, condition true 2 + f + p

Bound-T for ADSP-21020 Supported ADSP-21020 features 33

Instruction type in terms of the
memory data accesses

Execution time in cycles for d, f and p as
explained in the text

Access both DM and PM 2 + f + max (p, d)

Table 10 assumes that the instruction is not involved in a DAG load/use conflict (per Table 9).
To handle a conflict, Bound-T adds one cycle to the execution time of the instruction pair (as
computed from Table 10) whatever the number of wait states (since the delay is internal to the
processor).

Table 10 can be understood as a consequence of the following rules:

• Firstly, each instruction takes one cycle to execute (in the processor). A new instruction is
fetched concurrently (for one cycle), but the fetch wait-states consume an additional f
cycles, giving 1 + f cycles in total.

• If the instruction accesses the DM, this is concurrent with the fetch, giving max (f, d) wait
cycles, for a total time of 1 + max (f, d) cycles.

• If the instruction accesses PM data, firstly there is always one extra cycle (at least if the
cache misses), changing the constant term from 1 to 2. If the actual access is prevented by a
false condition, the total time is thus 2 + f cycles. If the condition is true, PM data are
accessed using p cycles, giving f + p wait cycles and a total time of 2 + f + p cycles.

• If the instruction accesses both PM data and DM data, it seems that only the PM data access
is concurrent with the DM access. The PM fetch access is done as a distinct sequential step.
This leads to f + max (p, d) wait cycles and a total time of 2 + f + max (p, d) cycles.

If all PM accesses were concurrent with the DM access, the last case would be expected to have
max (f + p, d) wait cycles.

Wait states for stack data

When a system has both fast and slow DM areas, it makes sense to place the CCP stack in fast
memory. To support this, Bound-T lets you set the number of wait states to be assumed for
data in the CCP stack, separately from the number of wait-states for other DM accesses, using
respectively the command-line options -stack_read/write_ws and -dm_read/write_ws .

However, note that Bound-T cannot always find out if a given memory access lies in the stack,
or in some other DM area. This happens for example if one subprogram passes a pointer to a
stack-located variable as a parameter to another subprogram. In such cases, Bound-T
considers that the access is not a stack access, which is safe (conservative) only if the stack
memory is faster, or at least not slower than the other memory.

Therefore, you should ensure that the number of wait-states set for stack accesses
(-stack...ws) is less or equal to the corresponding number of wait-states for general memory
(-dm...ws). Otherwise, the WCET bounds may be underestimated.

Summary of approximations

The following table lists the cases where Bound-T uses an approximate model of the timing of
ADSP-21020 instructions.

34 Supported ADSP-21020 features Bound-T for ADSP-21020

Table 11: Approximations for Instruction Times

Case Description
Maximum

error

Instruction cache
effects

If an instruction accesses the program memory for operand data, a
bus conflict on the program-memory bus causes an instruction-fetch
delay, unless the instruction to be fetched is in cache ([5],
section 3.2.2). Bound-T assumes conservatively that the cache
always misses, thus the delay for the additional instruction fetch is
always included for these instructions.

1 PM access
(including wait
states) per such
instruction

Short DO UNTIL
loops

Short DO UNTIL loops with few iterations may require some delay
cycles to terminate and fetch the next instruction ([5], section
3.5.1.2). As Bound-T computes only an upper bound on the number
of iterations, it cannot know if the delay occurs or not, and so it
assumes conservatively that the delay always occurs.

2 cycles per loop
termination

Writing Memory
Control registers

An instruction that writes a memory control register (DMWAIT,
DMBANK1-3 or DMADR for DAG1, and PMWAIT, PMBANK1 or PMADR for
DAG2) suffers an extra NOP cycle if the following instruction uses
the corresponding DAG ([5], section 7.2.1.5). Bound-T assumes that
this extra NOP cycle always occurs, without inspecting the following
instruction. (For the other case discussed in this section of [5],
where the first instruction loads a DAG index, modifier, base or
length register, Bound-T adds the extra cycle only if required by the
following instruction; see Table 9.)

1 cycle per such
write
instruction

DAG load/use
blocking on return

If a callee subprogram has several return points, some of which load
a DAG register (per Table 9) in the last instruction, Bound-T
assumes that any execution of the subprogram may end with loading
any of these DAGs, and can thus cause an extra cycle if the
instruction after the call uses any of these DAGs, even if some of the
possible return points do not load any DAG.

1 cycle per call

Memory wait states
that vary between
memory banks

In the ADSP-21020, different memory banks can be configured to
have different numbers of wait states. By default, Bound-T assumes
the same number of wait states for any memory access (of a
particular kind: fetch, stack data, other DM data, PM data). This
number is set by the user, so a safe choice would be the largest
number of wait states in any memory bank. If a constant number of
wait-states is not satisfactory, the number can be specified for
individual loops or subprograms by means of property assertions as
explained in section 3.8.

Bound-T reads the target-program's architecture file (.ach file) and
could therefore use the memory specifications it contains. This is a
possibly useful extension, not yet implemented.

Depends on
user-given
values. See
Table 10.

Additional memory
wait states at page
boundaries

The ADSP-21020 can be configured to insert additional wait states
when the addressed memory page changes. Bound-T however
assumes the same number of wait states for any memory access
without considering access sequences or page boundaries.

Depends on
user-given
values. See
Table 10.

Bit-reversed
addressing mode

Addresses output in bit-reverse mode always activate the lowest
bank of data memory space, including the number of wait states
associated with it ([5], section 7.2.9). The number of wait states
assumed by Bound-T does not depend on whether the addressing
mode is bit-reversed.

Depends on
user-given
values. See
Table 10.

Bound-T for ADSP-21020 Supported ADSP-21020 features 35

6 WARNINGS AND ERRORS FOR THE ADSP-21020

6.1 Warning messages

The following lists the Bound-T warning messages that are specific to the ADSP-21020 or that
have a specific interpretation for this processor. The messages are listed in alphabetical order.
The Bound-T Reference Manual [1] explains the generic warning messages, all of which may
appear also when the ADSP-21020 is the target.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.

There are also some possible warnings arising from problems in the COFF input file. These are
listed and described in Table 12.

Table 12: Warning Messages Specific to the ADSP-21020 Target
Warning message Meaning and remedy

Alternate registers not supported Reasons A system-register bit-manipulation instruction sets or
toggles bit 1 .. 7 or 10 of the MODE1 register, which may
enable the use of alternate processor registers. The analysis
in Bound-T does not support switching between alternate
registers.

Action If the code under analysis changes the primary/alternate
register-set selection, note that the analysis results may be
wrong.

Arithmetic effect of Push/Pop is
not modelled

Reasons The instruction manipulates loop counter or status stacks
and its effect is not modelled.

Action The user is responsible for evaluating the impact on the
results, and should treat the results with extreme suspicion.

Assertion on property "CCP"
overrides default

Reasons The calling protocol of the present subprogram is defined
by an assertion on the "CCP" property (see secion 3.8),
rather than by the default or automatic choice in Bound-T.

Action None needed, assuming that this overriding is intentional.

Calling protocol unknown; entry
bounds unknown

Reasons The calling protocol of the present subprogram is not
known to Bound-T. Therefore, Bound-T cannot deduce
bounds on the registers on entry to the subprogram,
because the bounds depend on the protocol.

Action Consider asserting the "CCP" property for the subprogram,
which will tell Bound-T what calling protocol to assume.

Call to _exit is converted to return Reasons The instruction calls subprogram _exit and is therefore
treated as a return instruction.

36 Warning messages Bound-T for ADSP-21020

Warning message Meaning and remedy

Action Note that the subprogram _exit is not analyzed by Bound-
T, and its execution time is not included in the reported
WCET results.

Note also that if this call is in a subprogram which is not the
root subprogram, treating the call as a return means that
the analysis assumes that execution does not stop at this
call, but returns to the caller of this subprogram and
continues there. This can lead to surprising (unrealistic)
analysis results.

CCP call to non-CCP subprogram:
S

Reasons The present subprogram contains a call to the subprogram
S, which is known (or believed) not to follow the C Calling
Protocol, but the call is in the CCP form.

Action If this is an intentional mix of calling protocols, check that
the analysis of parameter passing and stack management is
correct. If the mixing of protocols is not intentional, correct
the program to use protocols consistently.

CCP return within DO UNTIL loop
at A

Reasons The instruction at address A starts a CCP return sequence,
but there are some live DO UNTIL loops in the stack. This is
abnormal, since the CCP protocol assumes that the loop
stack is invariant over a call, and here the call would push
something on the loop stack.

Action The user is responsible for evaluating the impact on the
results, and should treat the results with extreme suspicion.

Condition NOT LCE not in loop,
considered opaque

Reasons The instruction uses the LCE (loop counter not expired)
condition with no containing loop.

Action Note that Bound-T is unable to analyse the condition on
this instruction. If it forms part of a loop-counting
mechanism, the loop cannot be bounded automatically.

Delayed jump to _exit is converted
to return

Reasons The instruction jumps (with delay) to subprogram _exit
and is therefore treated as a return instruction.

Action Note that the subprogram _exit is not analyzed by Bound-
T, and its execution time is not included in the reported
WCET results.

Note also that if this jump is in a subprogram which is not
the root subprogram, treating the jump as a return means
that the analysis assumes that execution does not stop at
this jump, but returns to the caller of this subprogram and
continues there. This can lead to surprising (unrealistic)
analysis results.

DO UNTIL LCE without counter
init ends at E, considered opaque

Reasons This DO UNTIL loop, which ends at address E, uses the loop
counter as the end condition (LCE) without initialising the
counter.

Action Note that Bound-T is unable to analyse the condition on
this instruction. This DO UNTIL loop cannot be automatically
bounded.

DO UNTIL loop is short Reasons A short DO UNTIL loop was identified. Loops that are shorter
than the processor pipeline terminate in special ways [5].

Bound-T for ADSP-21020 Warning messages 37

Warning message Meaning and remedy

Action Note that the estimated WCET for this loop may be too
large by 2 cycles, if the number of loop iterations is small.

DO UNTIL within loop-end delay
at A

Reasons There is a DO UNTIL instruction at address A, too close to the
end of another DO UNTIL loop. The program is illegal [5].

Action Correct the program.

I0 bit-reverse mode not supported Reasons A system-register bit-manipulation instruction sets or
toggles bit 1 of the MODE1 register, which may enable bit-
reverse mode for index register I0. Bound-T does not
support bit-reversed indexing in its analysis.

Action If bit-reverse mode is enabled, note that the analysis results
may be wrong.

Idling time not included in the
WCET

Reasons The subprogram contains an IDLE instruction, for which the
idling time cannot be known.

Action Note that the computed WCET for this subprogram
contains no contribution from the idling time.

Illegal instruction taken as NOP Reasons The program contains an illegal instruction (for which an
error message was already emitted). Bound-T attempts to
continue the analysis by assuming that this instruction does
nothing.

Action Note that if this assumption is wrong, the analysis results
may be wrong. Remove the illegal instruction from the
program.

Immediate modifier M too large
for Program Memory

Reasons The modifier value M that is used with a Program Memory
index register is too large. Only the 24 least significant bits
of the value are used.

Action The user is responsible for evaluating the impact.

Improper change to stack pointer Reasons The instruction has modified the stack pointer in a way that
cannot be analysed. Bound-T loses its knowledge of the
stack-pointer value at this point in the control flow.

Action Note that the use of stack is unanalysable after this
instruction.

Jump to _exit is converted to
return

Reasons The instruction jumps (without delay) to subprogram _exit
and is treated as a return instruction.

Action Note that the subprogram _exit is not analysed by Bound-
T, and its execution time is not included in the reported
WCET.

Note also that if this jump is in a subprogram which is not
the root subprogram, treating the jump as a return means
that the analysis assumes that execution does not stop at
this jump, but returns to the caller of this subprogram and
continues there. This can lead to surprising (unrealistic)
analysis results.

Jump to _exit with non-empty
loop stack

Reasons The instruction jumps to subprogram _exit, but still has
live DO UNTIL loops in the stack.

Action The user is responsible for evaluating the impact on the
results.

38 Warning messages Bound-T for ADSP-21020

Warning message Meaning and remedy

Large literal L = hex H, used as
signed = V

Reasons A large value (L as unsigned decimal, H as unsigned
hexadecimal) has been interpreted as a signed value (V,
decimal) by Bound-T, but it might be wrong. For example,
the 32-bit datum that in its unsigned form has the value
4294967294 can also be interpreted as -2. On the other
hand, it might be intended as a bit mask.

Action The user is responsible for evaluating the impact.

Large literal L = hex H, used as
unsigned

Reasons A large value (L as unsigned decimal, H as unsigned
hexadecimal) has been interpreted by Bound-T as
unsigned, but it might be wrong.

Action The user is responsible for evaluating the impact.

MODE1 system register modified Reasons The instruction changes the value of the MODE1 register,
which may enable alternate register sets and/or bit-reverse
mode for index register I0. Bound-T does not support
alternate registers or bit-reversed indexing.

Action If either alternate register sets of bit-reversal are activated,
note that the analysis results may be wrong.

Non-CCP callee assigns CCP cell: C Reasons In this call, the caller is assumed to follow the C Calling
Protocol (CCP) but not the callee. However, the callee
seems to change the value of some register or other storage
cell which should be invariant over the call, if the caller
follows the CCP.

Action Check that the assumptions (or assertions on the ccp
property) are correct for this program.

Non-CCP call to CCP subprogram:
S

Reasons The present subprogram contains a call to the subprogram
S, which is known (or believed) to follow the C Calling
Protocol, but the call is not in the CCP form.

Action If this is an intentional mix of calling protocols, check that
the analysis of parameter passing and stack management is
correct. If the mixing of protocols is not intentional, correct
the program to use protocols consistently.

Parameter P mapped beyond
caller's stack frame

Reasons The present subprogram accesses a parameter P from the
stack, but this parameter seems not to be in the stack frame
of the immediate caller, but in some even earlier stack
frame (along the present call path). This is unusual,
because a C subprogram usually cannot see such local
variables in higher-level subprograms and so should not be
able to access them (except through a pointer, which is not
the case here).

Action Note that the analysis of parameters passed to this
subprogram may not be correct. Inform Tidorum of the
problem, if you can give your program to Tidorum for
deeper analysis.

Program Memory cell address is
too large.

Reasons A memory access to Program Memory has an address that
is out of bounds of the memory space.

Action The user is responsible for evaluating the impact.

Bound-T for ADSP-21020 Warning messages 39

Warning message Meaning and remedy

Program Sequencer register
modified: R

Reasons The instruction modifies the Program Sequencer register R
(via Universal Register addressing). Changing the values of
Program Sequencer registers can change the control-flow in
ways that Bound-T does not master.

Action The user is responsible for evaluating the impact on the
results, and should treat the results with extreme suspicion,
because even the control-flow analysis may be invalidated.

Return within DO UNTIL loop at A Reasons The instruction at address A is a PCSP return (RTS) with
some live DO UNTIL loops in the stack.

Action The user is responsible for evaluating the impact on the
results, and should treat the results with extreme suspicion.

Table 13 below describes the warnings that may be issued for problems in the COFF input file.

Table 13: Warnings for COFF Problems
Warning message Meaning and remedy

Assumed to be DM section: S Reasons According to the COFF symbol-table, an external or static
symbol which is not a function symbol lies in section S, but
the architecture file does not say if section S is Data
Memory or Program Memory. Bound-T assumes that this
symbol is a variable in Data Memory.

Action Note that this assumption may be wrong. If necessary, add
the information to the architecture file.

COFF Aux_BF out of context Reasons The COFF file contains an auxiliary entry of type "Begin
Function", but not at the start of the symbols for a
subprogram. Bound-T ignores this auxiliary entry.

Action Probably no action is needed.

COFF Aux_BF within block Reasons The COFF file contains an auxiliary entry of type "Begin
Function" nested within a block scope. This is unexpected.
Bound-T ignores this auxiliary entry.

Action Probably no action is needed.

COFF Aux_EF out of context Reasons The COFF file contains an auxiliary entry of type "End
Function", but not at the end of the symbols for a
subprogram. Bound-T ignores this auxiliary entry.

Action Probably no action is needed.

COFF Aux_EF within block Reasons The COFF file contains an auxiliary entry of type "End
Function" nested within a block scope. This is unexpected.
Bound-T ignores this auxiliary entry.

Action Probably no action is needed.

Format of COFF line number table
is incorrect

Reasons The table mapping source-code line-number to machine
code addresses, which is part of the COFF debugging data,
seems to be internally inconsistent. (An entry in the table
has a line number of zero, which means that the entry is a
reference to a subprogram, but the referenced symbol-table
entry seems not to be a subprogram entry.)

40 Warning messages Bound-T for ADSP-21020

Warning message Meaning and remedy

Action Note that the mapping between source-code line-numbers
and machine-code address may be wrong or incomplete, as
Bound-T uses it.

Invalid register for COFF symbol:
S

Reasons The COFF symbol table says that symbol S lies in a register,
but gives a register number that is too large. Bound-T skips
this symbol-table entry.

Action Note that this symbol will not be available for use in
assertions.

Memory space unknown for
segment S

Reasons The memory address space (PM or DM) is unknown for this
segment, probably because it is not specified in the
architecture file.

Action Add the information to the architecture file.

Section S has relocation entries,
perhaps file is not linked

Reasons The section called S in the binary has relocation entries and
might not be linked.

Action Ensure that the COFF file is fully and statically linked, with
no remaining relocations needed.

Segment S assumed to be N*8 bits
Space Kind

Reasons Segment S is not listed in the architecture file. Bound-T
assumes that this segment has N-octet words (addressing
units), is in the indicated memory Space (PM or DM), and
is of the indicated Kind (RAM, ROM, or PORT).

Action If the assumption is wrong, add this segment to the
architecture file with the right properties.

Skipped misplaced COFF auxiliary
symbol, kind

Reasons The COFF file contains an "auxiliary" symbol of the given
kind but it is out of place in the symbol stream. Bound-T
therefore ignores and skips this symbol entry.

Action Probably no action is needed.

Skipping COFF symbol, kind = K,
Nature = N

Reasons The COFF file contains a symbol entry of the given kind and
nature, but it seems to be out of place in the symbol stream
and is therefore ignored.

Action Probably no action is needed. Possibly some symbols will
not be available to Bound-T for use in assertions or other
inputs.

Unexpected length L of optional
file header (skipped)

Reasons The COFF file has an "optional header" with a non-zero
length L octets. Bound-T cannot use such headers and
therefore skips them.

Action Note that the information in the optional header is not
available to Bound-T, whatever it is.

Unsure about COFF symbol with
Storage Class C : symbol

Reasons The COFF "storage class" attribute of this symbol has the
strange value C. Bound-T cannot classify the symbol.

Action Note that the symbol may not be usable to identify
subprograms or variables, and you may have to use
machine addresses instead.

Width and space unknown for
segment S

Reasons The memory address space (PM or DM) and word width
are unknown for this segment S, probably because they are
not specified in the architecture file.

Action Add the information to the architecture file.

Bound-T for ADSP-21020 Warning messages 41

Table 14 below describes warnings that may be issued for problems in the architecture file.

Table 14: Warnings for Architecture File Problems
Warning message Meaning and remedy

Bank B not specified; using default
attributes

Reasons The properties of the memory bank B are not specified in
the architecture file, so Bound-T will use default properties,
which are wait states = 0, wait-mode = "neither", and page
size = 0.

Action If the defaults are not correct, add the correct information
to the architecture file.

Width and space unknown for
segment S

Reasons The architecture file does not specify the word-width nor
the address space (PM or DM) for the segment named S. If
this segment is used, Bound-T will have to guess some
default values (which are reported as other warnings).

Action Add this information to the architecture file.

6.2 Error messages

This section lists and describes the Bound-T error messages that are specific to the ADSP-
21020 or that have a specific interpretation for this processor. The messages are divided into
three tables as follows:

• Table 15 shows the error messages related to the analysis in general, including errors
related to command-line options specific to the ADSP-21020.

• Table 16 shows the error messages related to the COFF file.

• Table 17 describes the error messages related to the architecture file.

In each table the messages are listed in alphabetical order. The Reference Manual [1] explains
the generic error messages, all of which may appear also when the ADSP-21020 is the target.

As Bound-T evolves, the set and form of these messages may change, so this list may be out of
date to some extent. However, we have tried to make the messages clear enough to be
understood even without explanation. Feel free to ask us for an explanation of any Bound-T
output that seems obscure.

Table 15: Error Messages Specific to the ADSP-21020 Target
Error Message Meaning and Remedy

Architecture file could not be opened Problem The architecture file (named with the -arch option)
seems to exist, but for some reason could not be
opened for reading. The name of the architecture file
is shown in field 3 of this error message.

Reasons Perhaps the user does not have access rights to read
the file.

Solution Ensure that the user has access rights to read the
architecture file.

Architecture file was not found Problem The architecture file (named with the -arch option)
seems not to exist. The name of the architecture file
is shown in field 3 of this error message.

42 Error messages Bound-T for ADSP-21020

Error Message Meaning and Remedy

Reasons Error in the command-line option

Solution Correct the file-name in the -arch option.

Branch without loop abort within loop
delay at A

Problem There is a branch instruction, without Loop Abort, at
address A too near to the loop's end. The program is
illegal.

Reasons A mistake in the program.

Solution Correct the program.

Call too near end of DO UNTIL loop Problem The program contains a DO UNTIL loop which
contains a CALL instruction, but the program is
illegal because this CALL is to close to the end of the
loop.

Reasons The program is illegal.

Solution Correct the program.

Constant cell modified in a CCP
subprogram at A

Problem A subprogram that is assumed to follow the CCP
protocol contains an instruction, at address A, which
violates the protocol by changing the value of a
register that should have a constant value.

Reasons Programming error, or there is a CCP-call to a
subprogram that intentionally does not follow the
CCP -protocol internally. The call makes Bound-T
assume that the subprogram follows the CCP fully,
both in its caller/callee interactions and in its
internal logic.

Solution Add a "CCP" property for this subprogram into the
assertion file.

Data Memory address A is in no DM
section

Problem The program seems to access DM data at address A,
but this address is not in any of the DM sections
defined in the architecture file.

Reasons The program and the architecture file are not
coherent, or the analysis is exploring an execution
path that is infeasible in reality.

Solution Check that the given architecture file is valid for the
given program.

DO UNTIL nested too deeply at A Problem DO UNTIL loop stack has overflowed at address A. The
present subprogram has more than 6 levels of nested
DO UNTIL loops.

Note that Bound-T at present does not keep track of
how the loop stack grows from subprogram to
subprogram in the call chain. For example, if
subprogram Foo has a 4-deep loop nest, where the
innermost loop calls subprogram Bar which has a 3-
deep loop nest, then the loop stack overflows (4 + 3 =
7 > 6), but Bound-T does not detect the overflow.

Reasons A mistake in the program.

Solution Obtain a correct COFF file.

Bound-T for ADSP-21020 Error messages 43

Error Message Meaning and Remedy

DO UNTIL with zero offset at A Problem DO UNTIL instruction at address A tries to create a
zero length loop.

Reasons A mistake in the program.

Solution Obtain a correct COFF file.

Dynamic call is taken as return Problem The program contains a call, using the PCSP
protocol, in which the address of the callee is
computed dynamically and not statically known.
Bound-T is unable to model the call correctly and
instead models it as a return from the caller. The
WCET of the caller may be underestimated.

Reasons The program is written in this way.

Solution Change the program to avoid dynamic calls.

Dynamic calls not supported Problem The program contains a call in which the address of
the callee is computed dynamically and not statically
known. Such calls are not supported in this version
of Bound-T.

Reasons The program is written in this way. Perhaps, if this is
a C program, it uses function pointers.

Solution Change the program to avoid dynamic calls, or ask
Tidorum Ltd to implement support for such calls.

Illegal instruction at A Problem The instruction at address A is not a valid ADSP-
21020 instruction.

Reasons A mistake in the program, or the program may be
compiled for some later SHARC model with an
extended instruction set.

Solution Obtain a correct COFF file for the ADSP-21020.

Instruction address A is in no PM
section

Problem The program seems to contain the instruction at
address A, but this address is not in any of the PM
sections defined in the architecture file.

Reasons The program and the architecture file are not
coherent, or the analysis is exploring an execution
path that is infeasible in reality.

Solution Check that the given architecture file is valid for the
given program.

Invalid CU field in a Single operation Problem The instruction tries to use an illegal computation
unit.

Reasons A mistake in the program.

Solution Obtain a correct COFF file.

Invalid Dual Add/Subtract instruction Problem The instruction has an illegal compute part.

Reasons A mistake in the program.

Solution Obtain a correct COFF file.

Invalid Parallel Multiplier & Dual
Add/Subtract instruction

Problem The instruction has an illegal compute part.

Reasons A mistake in the program.

44 Error messages Bound-T for ADSP-21020

Error Message Meaning and Remedy

Solution Obtain a correct COFF file.

Jump too near end of DO UNTIL loop Problem The program contains a DO UNTIL loop which
contains a JUMP instruction, but the program is
illegal because this JUMP is to close to the end of the
loop.

Reasons The program is illegal.

Solution Correct the program.

Overflow or underflow in 6-bit (or 24-
bit) PC-relative address at A

Problem A Program-Counter-relative branching instruction at
address A causes the target address to overflow
(address is above the maximum size of Program
Memory) or to underflow (address is below zero).

Reasons A mistake in the program, or the analysis is exploring
an infeasible execution path.

Solution Obtain a correct COFF file.

Patching is not implemented for SHARC Problem The command-line option -patch is used, but this
version of Bound-T does not support patching.

Reasons The command-line is written that way.

Solution Manage without patching, or ask Tidorum to
implement patching for this version of Bound-T.

Program Memory datum address A is in
no PM section

Problem The program seems to access PM data at address A,
but this address is not in any of the PM sections
defined in the architecture file.

Reasons The program and the architecture file are not
coherent, or the analysis is exploring an execution
path that is infeasible in reality.

Solution Check that the given architecture file is valid for the
given program.

Property P has no valid upper bound.
Using zero.

Problem The user's assertion file asserts bounds on property
P, but does not set an upper bound on the property
value. An upper bound is required, however.

Reasons Error in the assertion file.

Solution Correct the assertion file.

Property CPP should be asserted as 0 or
1, not N

Problem The user's assertion file gives a value N for the
property "ccp" which is illegal. This property takes
values 0 or 1 only.

Reasons Error in the assertion file.

Solution Correct the assertion file.

Return by offset B from strange state S Problem The program contains a return sequence which
specifies an offset B to the normal return address,
but the context (state) S of this return sequence is
unexpected.

Reasons Not known.

Solution Inform Tidorum.

Bound-T for ADSP-21020 Error messages 45

Error Message Meaning and Remedy

Return too near end of DO UNTIL loop Problem The program contains a DO UNTIL loop which
contains an RTS instruction, but the program is
illegal because this RTS is to close to the end of the
loop.

Reasons The program is illegal.

Solution Correct the program.

Segment index out of range Problem Some entity in the COFF file refers to an ADSP-
21020 segment which is not described in the
architecture file.

Reasons Inconsistency between COFF file and architecture
file.

Solution Most likely, the architecture file needs to be extended
with information for this segment.

Table 16 below describes the error messages for problems detected in the COFF input file. For
all these error messags, the possible reasons are either that the COFF file is corrupted, or that
the program (the compiler, assembler, or linker) that generated the COFF file follows different
rules. The solution is either to live with the problem or to obtain a COFF file which follows the
normal structure and syntax of symbol-table entries.

Table 16: Error Messages for COFF Problems
Error Message Meaning

Cannot read COFF file Problem The COFF file exists but could not be read, perhaps
because read permission is not granted to the current
user.

COFF Aux_EOB out of context Problem The COFF symbol table contains an "auxiliary entry"
in an unexpected position.

COFF N symbol I has A unexpected
auxiliary symbols; skipped

Problem The COFF symbol table has, at position I, a symbol of
the type N which is not expected to have
"auxiliary"entries, but which in fact has A such
entries. Bound-T cannot assign meanings to these
auxiliary entries and therefore skips and ignores
them.

COFF file not found Problem The COFF file could not be opened because a file of
the given name does not exist.

Skipping symbol I : H Problem The COFF symbol table contains, at position I, an
entry of an unexpected form. Bound-T cannot assign
a meaning to this entry and therefore skips and
ignores it. The octet sequence of the entry is
displayed in hexadecimal as H.

Unexpected end of COFF file Problem The COFF file ends unexpectedly (at some
unspecified position).

Unexpected end of COFF file while
reading section "S" from IO index I

Problem The COFF file ends unexpectedly at octet position I,
leaving the section named S incomplete.

46 Error messages Bound-T for ADSP-21020

Error Message Meaning

Unknown COFF C_Block symbol : S Problem The COFF symbol table contains a "block bracketing"
symbol S, which is not one of the standard bracket
symbols ".bb" or ".eb". Bound-T cannot assign a
meaning to this symbol, and therefore may
misunderstand the symbol table.

Unknown COFF C_Fcn symbol : S Problem The COFF symbol table contains a "function
bracketing" symbol S, which is not one of the
standard bracket symbols ".bf" or ".ef". Bound-T
cannot assign a meaning to this symbol, and
therefore may misunderstand the symbol table.

Table 17 below describes the error messages related to the architecture file, when the
command-line option -arch is used to include such a file in the analysis. Note that the "code
location" field (field 5) of these error messages shows the name of the architecture file and the
number of the line in the architecture file at which the error was detected. Moreover, the error
message text (in field 6) begins with the column number at which the error was detected, in
parentheses, and ends with the lexical token from the architecture file at which the error was
detected, also in parentheses (sometimes this is the token immediately following the erroneous
token). The table shows only the core of the error message and omits the parts giving the
column number and the lexical token.

For all these error messages, the reason is an error in the architecture file, and the solution is
to correct the architecture file.

Table 17: Error Messages for Architecture File Problems
Error Message Meaning

Bank qualifier expected Problem One of the qualifiers of a ".bank" directive (the text
following a "/") begins with something that is not a
recognized bank qualifier name such as "wtmode".

Bank selector missing Problem In a ".bank" directive, there is no bank selector, that
is, the directive does not specify PM0, PM1, DM0,
DM1, DM2, or DM3. Every ".bank" directive must
select one of these memory banks.

Delimiter ('/') expected Problem 1. In a ".segment" directive, where a qualifier starting
with '/' is expected, something else was found.

2. In a ".bank" directive, where a qualifier starting
with '/' is expected, something else was found.

Duplicate bank selection Problem A ".bank" directive contains more than one bank
selector, for example .../PM0/.../PM1/... This is a
non-fatal error; Bound-T continues parsing the
architecture file. If there are no fatal errors, the
analysis is executed using the last specified
(rightmost) bank selector.

Bound-T for ADSP-21020 Error messages 47

Error Message Meaning

Invalid literal (L) Problem A literal number is expected at this point in the
architecture file. The string L was found, but it is not
a valid decimal or hexadecimal number. Perhaps it is
meant to be a hexadecimal literal, but the prefix "0x"
was omitted.

Invalid width (W) Problem A "width" qualifier in a ".segment" directive specifies
a width W (in bits) that is not one of the acceptable
widths (16, 32, 40, or 48 bits).

Literal number expected Problem A literal number is expected at this point in the
architecture file, but something else was found.

Page size out of range (S) Problem A "pgsize" qualifier in a ".bank" directive specifies a
page size S that is negative or too large (over 215 =
32768).

Processor name expected Problem The ".processor" directive keyword is followed by
something that is not a "name", lexically speaking.
Note that kewords such as "PM0" are not considered
"names", and should therefore not be used as the
processor name in a ".processor" directive.

Processor, segment, bank or endsys
directive expected

Problem At this point in the architecture file, some directive is
expected, but the text actually found is not
recognized as a directive.

Segment name not defined Problem In a ".segment" directive, the name of the segment is
not given. Each ".segment" directive must define a
segment name.

Segment qualifier expected Problem One of the qualifiers of a ".segment" directive (the
text following a "/") begins with something that is
not a recognized segment qualifier name such as
"begin".

Semicolon expected Problem A semicolon was expected at this point in the (syntax
of) the architecture file, but something else (the
token displayed) was found.

System directive expected Problem The architecture file should start with the ".system"
directive, but this file starts with something else (or
is entirely empty).

System name expected Problem The ".system" directive keyword is followed by
something that is not a "name", lexically speaking.
Note that kewords such as "PM0" are not considered
"names", and should therefore not be used as the
system name in a ".system" directive.

Unexpected end of architecture file Problem The architecture file ends in the middle of a syntactic
construct, but seems correct up to that point. This
error message should never appear, because the end
of the text is always detected as the absence of some
expected lexical token, reported as such, and the
parsing of the file is then aborted.

48 Error messages Bound-T for ADSP-21020

Error Message Meaning

Wait mode expected Problem The value specified in a "wtmode" qualifier of a
".bank" directive is not recognized as one of the
known modes ("internal", "external", "neither",
"either", "both").

Wait states out of range (W) Problem The value W specified in a "wtstates" qualifier of a
".bank" directive is negative or greater than 7.

Bound-T for ADSP-21020 Error messages 49

Tidorum Ltd

Tiirasaarentie 32
FI-00200 Helsinki
Finland

www.tidorum.fi
info@tidorum.fi
Tel. +358 (0) 40 563 9186
Fax +358 (0) 42 563 9186
VAT FI 18688130

50 Error messages Bound-T for ADSP-21020

Tid
rum

mailto:info@tidorum.fi
http://www.tidorum.fi/

	1 Introduction
	1.1 Purpose and scope
	1.2 Overview
	1.3 References
	1.4 Abbreviations and acronyms
	1.5 Typographic conventions

	2 Using Bound-T for ADSP-21020
	2.1 Input formats
	2.2 Command arguments and options
	2.3 HRT analysis
	2.4 Choice of calling protocol
	2.5 Basic output format limitations

	3 Writing assertions
	3.1 Overview
	3.2 Naming scopes
	3.3 Naming subprograms
	3.4 Naming variables
	3.5 Naming statement labels
	3.6 Naming statements by source-line numbers
	3.7 Naming items by address
	3.8 Properties

	4 The ADSP-21020 and Timing Analysis
	4.1 The ADSP-21020 processor
	4.2 Static execution time analysis on the ADSP-21020

	5 Supported ADSP-21020 Features
	5.1 Overview
	5.2 Reminder of generic limitations
	5.3 Support synopsis
	5.4 Data registers and memory accesses
	5.5 Registers and the C Calling Protocol
	5.6 Modes, system registers, condition codes
	5.7 Computational operations
	5.8 Instructions
	5.9 Program Sequencer registers
	5.10 Other registers
	5.11 Time accuracy and approximations

	6 Warnings and Errors for the ADSP-21020
	6.1 Warning messages
	6.2 Error messages

